Targeted Delivery of Therapeutic Agents by Smart Nanocarrier for Treatment of Parkinson’s Disease: A Novel Brain Targeting Approach

authors:

avatar Fatemeh Moradi 1 , avatar Houman Parsaie ORCID 1 , 2 , avatar Enam Alhagh Charkhat Gorgich ORCID 1 , 2 , 3 , *

Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Students’ Scientific Association of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

how to cite: Moradi F, Parsaie H, Charkhat Gorgich E A. Targeted Delivery of Therapeutic Agents by Smart Nanocarrier for Treatment of Parkinson’s Disease: A Novel Brain Targeting Approach. Gene Cell Tissue. 2019;6(2):e91213. https://doi.org/10.5812/gct.91213.

References

  • 1.

    Tolosa E, Wenning G, Poewe W. The diagnosis of parkinson's disease. Lancet Neurol. 2006;5(1):75-86. https://doi.org/10.1016/S1474-4422(05)70285-4.

  • 2.

    Heidari Z, Moghtaderi A, Mahmoudzadeh-Sagheb H, Gorgich EA. Stereological evaluation of the brains in patients with parkinson’s disease compared to controls. Rev Romana Med Lab. 2017;25(3):265-74. https://doi.org/10.1515/rrlm-2017-0010.

  • 3.

    Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev. 2013;65(1):171-222. [PubMed ID: 23319549]. https://doi.org/10.1124/pr.111.005678.

  • 4.

    Li Y, Zhou Y, Qi B, Gong T, Sun X, Fu Y, et al. Brain-specific delivery of dopamine mediated by n,n-dimethyl amino group for the treatment of Parkinson's disease. Mol Pharm. 2014;11(9):3174-85. [PubMed ID: 25072272]. https://doi.org/10.1021/mp500352p.

  • 5.

    Qu M, Lin Q, He S, Wang L, Fu Y, Zhang Z, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson's disease. J Control Release. 2018;277:173-82. [PubMed ID: 29588159]. https://doi.org/10.1016/j.jconrel.2018.03.019.

  • 6.

    Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release. 2018;277:1-13. [PubMed ID: 29501721]. https://doi.org/10.1016/j.jconrel.2018.02.040.

  • 7.

    Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev. 2013;33(3):457-516. [PubMed ID: 22434495]. https://doi.org/10.1002/med.21252.

  • 8.

    Sanchez-Moreno P, Ortega-Vinuesa JL, Peula-Garcia JM, Marchal JA, Boulaiz H. Smart drug-delivery systems for cancer nanotherapy. Curr Drug Targets. 2018;19(4):339-59. [PubMed ID: 27231107]. https://doi.org/10.2174/1389450117666160527142544.

  • 9.

    Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials. 2010;31(19):5246-57. [PubMed ID: 20382424]. https://doi.org/10.1016/j.biomaterials.2010.03.011.

  • 10.

    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39-43. [PubMed ID: 17572664]. https://doi.org/10.1038/nature05901.

  • 11.

    Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543. [PubMed ID: 26633001]. [PubMed Central ID: PMC4668387]. https://doi.org/10.1038/srep17543.

  • 12.

    Lam FC, Morton SW, Wyckoff J, Vu Han TL, Hwang MK, Maffa A, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun. 2018;9(1):1991. [PubMed ID: 29777137]. [PubMed Central ID: PMC5959860]. https://doi.org/10.1038/s41467-018-04315-4.