Prevalence of Subclinical Hypothyroidism in Chronic Kidney Disease in a Population-based Study: Tehran Thyroid Study

authors:

avatar Sara Kazempour-Ardebili 1 , avatar Atefeh Amouzegar 2 , avatar Maryam Tohidi ORCID 1 , avatar Atieh Amouzegar 3 , * , avatar Fereidoun Azizi ORCID 3 , **

Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Department of Nephrology, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Corresponding Authors:

How To Cite Kazempour-Ardebili S, Amouzegar A, Tohidi M, Amouzegar A, Azizi F. Prevalence of Subclinical Hypothyroidism in Chronic Kidney Disease in a Population-based Study: Tehran Thyroid Study. Int J Endocrinol Metab. 2021;19(2):e103750. https://doi.org/10.5812/ijem.103750.

Abstract

Background:

Chronic kidney disease (CKD) is a rising public health concern that has detrimental effects on cardiovascular health and overall survival. Subclinical hypothyroidism (SCH) has been associated with poor outcomes in the general population. It is thought to be more prevalent in CKD subjects, and their coexistence may contribute to poor outcomes in these patients. We aimed to determine the prevalence of SCH in CKD.

Methods:

Using data from the Tehran thyroid study, which is a prospective population-based cohort study, adult subjects with an estimated Glomerular Filtration Rate (eGFR) of 60 mL/min/1.73 m2 or less were selected for studying the prevalence of thyroid abnormalities, as well as other known cardiovascular risk factors.

Results:

Of 5,626 subjects recruited, 823 (14.6%) individuals had CKD. Individuals with CKD were older, heavier, had a higher prevalence of diabetes, higher serum thyrotropin, and thyroid peroxidase anti-body levels, but lower free thyroxine levels. The prevalence of SCH was 7.3% and 5.2% (P < 0.001) in kidney disease and non-kidney disease subjects, respectively. However, there was no difference in the risk of SCH between CKD and non-CKD subjects after adjustment for age, sex, BMI, smoking, and TPOAb (OR: 1.28; 95%CI, 0.89 - 1.83). None of the metabolic markers compared between the CKD subgroups of those with and without SCH remained statistically significantly different after adjusting for age and gender.

Conclusions:

The prevalence of SCH was not higher in CKD after controlling for confounding factors. Besides, CKD subjects with and without SCH had no different metabolic parameters.

1. Background

Chronic kidney disease (CKD) is a globally growing health concern incurring great costs to healthcare systems due to its morbidity and mortality (1). That CKD is usually present in subjects suffering from multiple comorbidities increases the challenge of identifying significant prognostic predictors among this often complicated population. Also, CKD importance is featured by its role in increasing the risk of cardiovascular disease (CVD) (2). It is a fact that overt disease is only the tip of the CKD ‘iceberg’ (3), and there are effective measures that prevent its progression to end-stage renal disease (ESRD) (4). Therefore, studying CKD and understanding the dynamics that drive its progression and influence its outcomes is not only a national priority but also a global challenge.

Among many indicated abnormalities, suboptimal thyroid function has also been identified as a potential player in the development and outcome of CKD (5-7). It is considerably associated with a higher risk of CKD without considering other conventional risk factors, among which age might affect this association (8). Thyroid hormone affects the entire body, including both the renal and cardiovascular systems. While the thyroid hormone influences the growth and function of the kidney, it is also affected by the kidney, as it is involved in the clearance of iodine, thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH), besides the deiodination of T4 to produce T3, being biologically a more active form. Subjects that suffer from acute kidney injury present with low T4, T3, and TSH levels, known as a euthyroid sick syndrome (9, 10). However, when the insult to the kidney occurs chronically, as is the case in CKD, these changes are less evident.

Despite the growing prevalence of CKD and the postulated detrimental effects of even subclinical thyroid dysfunction on its outcome, there is little data on the prevalence of subclinical hypothyroidism (SCH) in subjects with CKD. That thyroid and kidney function can affect each other, with thyroid hormones necessary for kidney growth, development, and electrolyte homeostasis, and the kidney responsible for thyroid hormone metabolism and elimination, makes it very difficult to establish a causal link between thyroid and kidney dysfunction. However, looking at the prevalence of the concurrence of these conditions may be a step towards better recognizing a more at-risk population subgroup. To this end, we examined data from the Tehran thyroid study (TTS) to determine the prevalence of SCH in subjects with CKD.

2. Methods

2.1. Study Population

The present study was conducted within the framework of the TTS, which is a prospective population-based cohort study performed on the residents of district-13 of Tehran (11). The study aimed to evaluate the natural course and prevalence of thyroid diseases and their long-term consequences related to CVD, cardiovascular mortality, and all-cause mortality in the iodine-sufficient urban population of Tehran. Details of the study methods have previously been described (12). In brief, 5,786 persons (2,376 men and 3,410 women), aged 20 years or over, were evaluated in the TTS cross-sectional phase, from March 1999 to December 2001. The study participants were followed every three years for 12 years in a prospective follow-up study.

For this study, we included subjects who had measurements of FT4 and TSH (N = 1,368, missing = 4), and participants were divided into two groups: those with eGFR > 60 mL/min/1.73 m2 and those with eGFR ≤ 60 mL/min/1.73 m2 at baseline. We excluded seven subjects with high FT4 and TSH or low FT4 and TSH and 145 pregnant women.

In each phase, a detailed interview was performed by a trained interviewer. Demographic data and information regarding smoking habits, thyroid surgery, history of radioiodine ablation, and detailed medication use (anti-thyroid, thyroxin, or any medication interfering with thyroid function tests, or anti-diabetic agents and lipid-lowering agents) were obtained. The study protocol was approved by the Ethics Committee of the Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences. Written informed consent was obtained from all subjects.

2.2. Laboratory Measurements

All participants gave fasting blood samples drawn between 7:00 and 9:00 a.m. into vacutainer tubes at each reassessment. Details of biochemical measurements were completely presented previously (13). Serum creatinine was measured at baseline and after six years of follow-up, according to the standard colorimetric Jaffe_Kinetic reaction method. Both intra- and inter-assay CVs were below 3.1%; all analyses were performed using commercial kits (Pars Azmoon Inc., Tehran, Iran). We used the modification of diet in renal disease (MDRD) equation to express eGFR in mL/min/1.73 m2 of body surface area (14). The abbreviated MDRD study equation is as follows:

eGFR=186×Serum creatinine-1.154×(Age)-0.203×(0.742 if female)×(1.210 if African-American)

Jostel’s TSH index (TSHI) was examined by online SPINA Thyr 3.4.2.548 application (15).

2.3. Terms Definition

Hyperthyroidism was defined as TSH < 0.32 mU/L and FT4 > 19.95 pmol/L, hypothyroidism as TSH > 5.06 mU/L and FT4 < 11.71 pmol/L, subclinical hyperthyroidism as TSH < 0.3 mU/L and normal FT4, and subclinical hypothyroidism as TSH > 5.06 mU/L and normal FT4 (normal FT4, 11.71 pmol/L< FT4 < 19.95 pmol/L) (16). Those with TPOAb+ were men with TPOAb > 32 IU/mL and women with TPOAb > 35 IU/mL®. Jostel's TSHI was calculated as ln TSH (mIU/L) + 0.1345 × fT4 (pmol/L) (17). Finally, eGFR ≥ 60 mL/min/1.73 m2 was defined as not having CKD and eGFR< 60 mL/min/1.73 m2 as having CKD corresponding to stages 3 – 5 of CKD based on the Kidney Disease Outcomes and Quality Initiative guidelines (17). Patients were classified based on their eGFR levels using the national kidney foundation guidelines.

2.4. Statistical Analysis

The data on covariates with normal and skewed distribution are expressed as means (SD) and medians (interquartile range), respectively, and percentages for categorically distributed variables. Com-parison of baseline characteristics between participants was done by student’s t-test for continuous variables, chi-square test for categorical variables, and Mann-Whitney test for skewed variables. A multivariate Logistic regression analysis was used to calculate the odds ratio (OR) of hypothyroid-ism. Statistical significance was indicated with a P-value of less than 0.05.

3. Results

A total of 5,626 individuals (2,371 males and 3,255 females) with a mean age ± SD of 40.6 ± 14.3 years were recruited in this study. Of them 823 (24.4%) with mean Sd age, 54 ± 11.1 years had CKD. No individuals had eGFR< 15%.

Table 1 shows the study characteristics of participants with and without CKD. Individuals with CKD were older (54.9 versus 38.2 years, P < 0.001) and had a higher prevalence of diabetes (21.3% versus 8.8%, P < 0.001) and higher BMI (28.2 versus 26.3 kg/m2, P < 0.001) than those without CKD. The serum TSH level was higher (1.82 mU/L versus 1.57 mU/L, P = 0.004) and FT4 was lower (1.17 ng/dL versus 1.22 ng/dL, P < 0.001) in CKD cases. The median TPOAb level was higher in the CKD group than in the non-CKD group; all of these differences were statistically significant with trivial clinical significance. A total of 149 (18.2%) and 631 (13.2%) individuals were TPOAb-positive in those with and without CKD, respectively. Jostel’s TSH index was 2.6 (2.1 - 3.2) and 2.5 (2.1 - 3.1) in those with and without CKD, respectively, which was statistically significant but not clinically significant.

Table 1.

Baseline Characteristics of Study Participants with and without Chronic Kidney Diseasea

VariableeGFR ≤ 60, mL/min/1.73 m2eGFR > 60, mL/min/1.73 m2P-Value b
Number of subjects8234803
Age (y)54.9 (11.1)38.2 (13.3)< 0.001
Female, No. (%)606 (73.6)2649 (55.2)< 0.001
TSH (mU/L)1.82 (1.0,13.3)1.57 (0.9,2.5)0.004
FT4 (ng/dL)1.17 (1.1,1.3)1.22 (1.1,1.3)< 0.001
TPOAb (IU/mL)6.8 (3.4,15.6)5.6 (3.3,11.6)< 0.001
TPOAb +, No. (%)149 (18.2)631 (13.2)
SCH, No. (%)60 (7.3)251 (5.2)< 0.001
Overt hypothyroidism, No. (%)35 (4.3)77 (1.6)< 0.001
Subclinical hyperthyroidism, No. (%)28 (3.4)182 (3.8)< 0.001
Overt hyperthyroidism, No. (%)12 (1.5)110 (2.3)< 0.001
Euthyroid, No. (%)685 (83.5)4169 (87.1)< 0.001
Jostel’s TSH Index2.6 (2.1,3.2)2.5 (2.1,3.1)< 0.001
BMI (kg/m2)28.2 (4.2)26.3 (4.61)< 0.001
FBS (mg/dL)95 (87,106)89 (83,96)< 0.001
TC (mg/dL)231.5 (46.4)196.1 (43.1)< 0.001
LDL-C (mg/dL)150.2 (37.5)123.6 (34.4)< 0.001
HDL-C (mg/dL)43.1 (10.7)41.4 (10.9)< 0.001
TG (mg/dl)171 (122,236)129 (88,192)< 0.001
Smoking (%) c47 (5.8)592 (12.5)< 0.001
DM (%)170 (21.3)388 (8.8)< 0.001
On diabetic therapy (%)642 (7.8)115 (2.4)< 0.001
On LT4 therapy (%)24 (2.9)111 (2.3)0.3
On lipid-lowering therapy (%)46 (5.6)79 (1.7)< 0.001

The prevalence of SCH was 7.3% in CKD individuals, which was 5.2% in individuals without CKD (P < 0.001). The prevalence of overt hypothyroidism was 4.3% in CKD individuals, which was higher than in those without CKD (1.6%) (P < 0.001). Subclinical and overt hyperthyroidism prevalence was also compared between the groups, with the CKD group exhibiting a 3.4% prevalence for subclinical and 1.5% for overt hyperthyroidism, while the non-CKD group showed a 3.8% subclinical and 2.3% overt hyperthyroidism. Looking at metabolic markers, the CKD group had higher serum FBS levels, total cholesterol levels, LDL-C levels, TG levels, and HDL-C levels.

The study population was further divided into two subgroups: Subjects with CKD and SCH and subjects with CKD without SCH (Table 2). Although there were no differences in metabolic parameters, e.g., TC, LDL-C, HDL-C, TG, and prevalence of DM between the two groups, more individuals with CKD and SCH were on lipid-lowering therapy (12.1% vs. 5.2%). Besides, TSH was higher and FT4 was lower in those with CKD and SCH than in those with CKD without SCH. Also, TPOAb was present in 56.7% of cases in the CKD and SCH group versus 15.2% in the CKD and no SCH group (P < 0.001). Jostel’s index was higher in those with CKD and SCH than in those with CKD without SCH (3.9 vs. 2.5, P < 0.001).

Table 2.

Comparison of Individuals with and without Subclinical Hypothyroidism in Chronic Kidney Disease Cases After Adjusting for Age and Gendera

VariableCKD with SCH (N = 60)CKD with No SCH (N = 763)P-Valueb
Age (y)53.6 (11.4)55.1 (11.1)0.3
Female, No. (%)52 (86.7)551 (72.5)0.01
TSH (mU/L)6.7 (5.6,9.1)1.6 (0.9,2.7)< 0.001
FT4 (ng/dL)1.1 (0.9,1.2)1.2 (1.1,1.3)< 0.001
TPOAb (IU/mL)62.7 (4.6,275.2)6.6 (3.9,13.3)< 0.001
Positive TPOAb, No. (%)34 (56.7)115 (15.2)< 0.001
Jostel’s TSH Index3.9 (3.6,4.1)2.5 (2.1,3.1)< 0.001
BMI (kg/m2)28.8 (4.2)28.2 (4.2)0.3
FBS (mg/dL)94.5 (85,116.7)95 (87,106)0.9
TC (mg/dL)240.5 (56.3)203.5 (45.3)0.2
LDL-C (mg/dL)157.6 (42.7)149.4 (36.9)0.1
HDL-C (mg/dL)41.7 (9.2)43.1 (10.8)0.3
TG (mg/dL)205 (118.5,282)169 (121.3,232.8)0.08
Smoking, No. (%) c3 (5.2)44 (5.8)1
Diabetes Mellitus, No. (%)16 (28.6)153 (20.7)0.7
On diabetic therapy, No. (%)4 (6.9)60 (7.9)1
On LT4 therapy, No. (%)4 (6.9)20 (2.6)0.08
On lipid lowering therapy, No. (%)7 (12.1)39 (5.2)0.03

The risk of SCH was higher in the CKD group than in the non-CKD group after adjusting for age, sex, smoking, TPOAb positivity, and BMI (OR 1.28, 95% CI 0.89 - 1.83) but not significantly (Table 3). Looking at the effect of SCH on cardiovascular outcomes in the CKD population, we found 29 cases of first CVD event in those with SCH and 579 cases in those without. In terms of CVD and all-cause mortality, we had nine cases in the SCH group but found 200 cases in those without SCH. Due to the small number of events in the CKD with SCH group, we were unable to determine the effect of SCH on the outcome in our CKD population.

Table 3.

Odds Ratio of Subclinical Hypothyroidism in Chronic Kidney Disease Subjects Using Multivariate Analysis a

Odds Ratio95% CIP Value
eGFR > 60 (mL/min/1.73 m2)1.280.89 - 1.830.1
Age0.990.98 - 1.000.04
Sex (male)1.811.34 - 2.440.001
Smoking 0.570.33 - 0.990.04
TPOAb7.625.96 - 9.750.001
BMI0.980.96 - 1.010.2

4. Discussion

Comparison of the CKD and non-CKD groups revealed a statistically significantly higher prevalence of hypothyroidism in the CKD group, as well as TPOAb positivity; however, after adjusting for confounding factors, the significant differences no longer remained. The CKD group was also older and consisted of subjects with higher BMI, FBS, and lipid levels, as well as a higher prevalence of diabetes. Within the CKD group, comparing those with SCH and those without SCH showed no differences in metabolic parameters, except for higher TSHI and using lipid-lowering drugs.

The rapid increase in the prevalence of CKD worldwide, as well as its high treatment costs, makes CKD an increasingly important public health concern. As known, 13.1% of US adults are affected by CKD (18), and although the prevalence rates vary greatly across the globe, from 3.0 to 21.8% (1), they are all similarly on the rise. Besides, CKD is disproportionately more prevalent in developing nations, as its main risk factors, i.e., diabetes (19), hypertension (20), obesity (21), population growth and increasing age (22, 23), are increasing in these nations. The latest reported age-adjusted prevalence of CKD in Iran is 14.9% and the overall prevalence is 15.1% (24, 25), making CKD an even greater concern than before. In this regard, SCH is a purely biochemical diagnosis that has been associated with a multitude of clinical manifestations including abnormal lipid metabolism (26), cardiac dysfunction (27), and increased risk of atherosclerosis and coronary heart disease (28), all of which are conditions associated with CKD and its poor outcome.

Looking at thyroid function tests within this population, subjects with normal eGFR were more likely to be euthyroid than those classified as having CKD, but we did not find a higher prevalence of overt and subclinical hypothyroidism in the CKD group after adjustment for confounders. There are few studies that have examined the prevalence of hypothyroidism among CKD patients not requiring dialysis. The findings of the current study are in contrast with some studies. Lo et al. examined the NHANSE data to show a steady rise in the prevalence of hypothyroidism (overt and subclinical) with declining GFR (29, 30). One in five CKD persons with eGFR < 60 mL/min/1.73 m2 had evidence of hypothyroidism. The study showed an increased prevalence of hypothyroidism with reduced eGFR, which was independent of gender, age, and ethnicity but TPOAb titer or positivity was not considered a confounder to be adjusted for. Chonchol et al. reported a 17.9% prevalence of SCH after adjustment for age, gender, and metabolic profile (FPG, total cholesterol, and TG) in their cross-sectional observational study, compared to a 7% prevalence in subjects with eGFR ≥ 90 ml/min/1.73 m2. The findings of the study also showed increase in risk of SCH with decreasing level of eGFR. (31). Similarly, this study did not consider TPOAb as a confounder and the results might change after adjustment for TPOA positivity. We also calculated Jostel’s TSH Index (TSHI), which showed that the higher TSHI level in the CKD group was not due to TSH deficiency in all subgroups that were studied; this suggests that there is a reduced response to TSH within the functional tissue of the thyroid gland.

The main concern in these subjects is the concurrence of two conditions with known morbid effects on the cardiovascular system: SCH and CKD. As shown, SCH has been associated with CVD risk factors such as older age (32), high total cholesterol (TC), LDL-C (33, 34), hypertension (35), and elevated CRP (35), as well as diastolic dysfunction (36), ischemic heart disease (37), and congestive heart failure (38). Clinical trials have also shown that hormone replacement therapy in SCH subjects reduces CV risk factors (39, 40) and improves myocardial structure and contractility (41). We observed 12 cases in the CKD group with SCH (among 60 cases) that developed their first CVD event during the three-year follow-up period. Although this seems to be slightly greater than the percentage of subjects that had the first CVD event in the CKD without SCH group (12.6% versus 11.3%), the numbers are still too small to enable us to make an informed comparison of CVD outcome between these two groups.

The current study has some limitations. First, our definition of kidney function was based on estimated GFR and calculated using serum creatinine values, where the ideal would be to specifically measure clearance. Second, serum creatinine values have been a matter of debate recently, with many nephrologists seeking a standardized creatinine measurement. While this matter has largely been resolved in many countries, this study was unable to ascertain with certainty that serum creatinine was measured using an internationally standardized kit. However, all the creatinine samples were measured using the same kit (Pars Azmoon), which is one of the most commonly used assays for creatinine across Iran. Lastly, as mentioned above, the present study was unable to look at the effect of SCH in CKD on CVD and overall outcome, due to the small number of events in this relatively small subgroup of the TTS cohort. As the number of years of follow-up increases, we hope to be able to better study these effects.

4.1. Conclusions

The prevalence of SCH was comparable between subjects with CKD and those without in this urban Middle-Eastern cohort. In the present study population, the concurrence of CKD and SCH with female gender and older age may explain potentially worse outcomes; however, we do not currently have sufficient prospective follow-up data on CVD outcomes and mortality to explore this further.

Acknowledgements

References

  • 1.

    Ayodele OE, Alebiosu CO. Burden of chronic kidney disease: an international perspective. Adv Chronic Kidney Dis. 2010;17(3):215-24. [PubMed ID: 20439090]. https://doi.org/10.1053/j.ackd.2010.02.001.

  • 2.

    Weiner DE, Tighiouart H, Amin MG, Stark PC, MacLeod B, Griffith JL, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004;15(5):1307-15. [PubMed ID: 15100371]. https://doi.org/10.1097/01.asn.0000123691.46138.e2.

  • 3.

    White SL, Cass A, Atkins RC, Chadban SJ. Chronic kidney disease in the general population. Adv Chronic Kidney Dis. 2005;12(1):5-13. [PubMed ID: 15719328]. https://doi.org/10.1053/j.ackd.2004.10.009.

  • 4.

    Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365(9456):331-40. [PubMed ID: 15664230]. https://doi.org/10.1016/S0140-6736(05)17789-7.

  • 5.

    Dousdampanis P, Trigka K, Vagenakis GA, Fourtounas C. The thyroid and the kidney: a complex interplay in health and disease. Int J Artif Organs. 2014;37(1):1-12. [PubMed ID: 24634329]. https://doi.org/10.5301/ijao.5000300.

  • 6.

    Gopinath B, Harris DC, Wall JR, Kifley A, Mitchell P. Relationship between thyroid dysfunction and chronic kidney disease in community-dwelling older adults. Maturitas. 2013;75(2):159-64. [PubMed ID: 23541904]. https://doi.org/10.1016/j.maturitas.2013.03.009.

  • 7.

    Tatar E, Kircelli F, Ok E. The contribution of thyroid dysfunction on cardiovascular disease in patients with chronic kidney disease. Atherosclerosis. 2013;227(1):26-31. [PubMed ID: 23206977]. https://doi.org/10.1016/j.atherosclerosis.2012.10.068.

  • 8.

    Wang X, Zhao X, Huang X. Association of subclinical thyroid dysfunction with chronic kidney disease: A systematic review and meta-analysis. Endocr Res. 2020;45(1):41-9. [PubMed ID: 31345069]. https://doi.org/10.1080/07435800.2019.1645164.

  • 9.

    Iglesias P, Diez JJ. Thyroid dysfunction and kidney disease. Eur J Endocrinol. 2009;160(4):503-15. [PubMed ID: 19095779]. https://doi.org/10.1530/EJE-08-0837.

  • 10.

    Wartofsky L, Burman KD. Alterations in thyroid function in patients with systemic illness: the "euthyroid sick syndrome". Endocr Rev. 1982;3(2):164-217. [PubMed ID: 6806085]. https://doi.org/10.1210/edrv-3-2-164.

  • 11.

    Amouzegar A, Mehran L, Takyar M, Abdi H, Azizi F. Tehran thyroid study (TTS). Int J Endocrinol Metab. 2018;16(4 Suppl). e84727. [PubMed ID: 30584429]. [PubMed Central ID: PMC6289306]. https://doi.org/10.5812/ijem.84727.

  • 12.

    Azizi F, Amouzegar A, Delshad H, Tohidi M, Mehran L, Mehrabi Y. Natural course of thyroid disease profile in a population in nutrition transition: Tehran Thyroid Study. Arch Iran Med. 2013;16(7):418-23. [PubMed ID: 23808780].

  • 13.

    Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M, et al. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials. 2009;10(1). https://doi.org/10.1186/1745-6215-10-5.

  • 14.

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70. [PubMed ID: 10075613]. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.

  • 15.

    Dietrich JW. Spina Thyr Version 3.4.2.548. 1994 - 2020, [updated Mar 26, 2020]. Available from: http://spina.medizinische-kybernetik.de/spina-thyr/en/berechnen.html.

  • 16.

    Amouzegar A, Delshad H, Mehran L, Tohidi M, Khafaji F, Azizi F. Reference limit of thyrotropin (TSH) and free thyroxine (FT4) in thyroperoxidase positive and negative subjects: a population based study. J Endocrinol Invest. 2013;36(11):950-4. [PubMed ID: 23873252]. https://doi.org/10.3275/9033.

  • 17.

    Jostel A, Ryder WD, Shalet SM. The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH Index. Clin Endocrinol (Oxf). 2009;71(4):529-34. [PubMed ID: 19226261]. https://doi.org/10.1111/j.1365-2265.2009.03534.x.

  • 18.

    Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038-47. [PubMed ID: 17986697]. https://doi.org/10.1001/jama.298.17.2038.

  • 19.

    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. [PubMed ID: 19896746]. https://doi.org/10.1016/j.diabres.2009.10.007.

  • 20.

    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217-23. [PubMed ID: 15652604]. https://doi.org/10.1016/S0140-6736(05)17741-1.

  • 21.

    Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7. [PubMed ID: 18607383]. https://doi.org/10.1038/ijo.2008.102.

  • 22.

    Lutz W, K CS. Dimensions of global population projections: what do we know about future population trends and structures? Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2779-91. [PubMed ID: 20713384]. [PubMed Central ID: PMC2935115]. https://doi.org/10.1098/rstb.2010.0133.

  • 23.

    Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100-10. [PubMed ID: 19934210]. [PubMed Central ID: PMC2802672]. https://doi.org/10.1093/carcin/bgp263.

  • 24.

    Hosseinpanah F, Kasraei F, Nassiri AA, Azizi F. High prevalence of chronic kidney disease in Iran: a large population-based study. BMC Public Health. 2009;9:44. [PubMed ID: 19183493]. [PubMed Central ID: PMC2658666]. https://doi.org/10.1186/1471-2458-9-44.

  • 25.

    Bouya S, Balouchi A, Rafiemanesh H, Hesaraki M. Prevalence of chronic kidney disease in iranian general population: A meta-analysis and systematic review. Ther Apher Dial. 2018;22(6):594-9. [PubMed ID: 29974630]. https://doi.org/10.1111/1744-9987.12716.

  • 26.

    Pucci E, Chiovato L, Pinchera A. Thyroid and lipid metabolism. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S109-12. [PubMed ID: 10997623]. https://doi.org/10.1038/sj.ijo.0801292.

  • 27.

    Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10(8):665-79. [PubMed ID: 11014311]. https://doi.org/10.1089/10507250050137743.

  • 28.

    Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med. 2000;132(4):270-8. [PubMed ID: 10681281]. https://doi.org/10.7326/0003-4819-132-4-200002150-00004.

  • 29.

    Lo JC, Chertow GM, Go AS, Hsu CY. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;67(3):1047-52. [PubMed ID: 15698444]. https://doi.org/10.1111/j.1523-1755.2005.00169.x.

  • 30.

    Alshammari F, Alhazaa S, Althemery A, Alsabaan F, AlGosaibi A, Alshammari M, et al. Prevalence of hypothyroidism among chronic kidney disease patients in security force hospital (SFH) in Saudi Arabia. J Family Med Prim Care. 2019;8(10):3313-7. [PubMed ID: 31742161]. [PubMed Central ID: PMC6857355]. https://doi.org/10.4103/jfmpc.jfmpc_641_19.

  • 31.

    Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(5):1296-300. [PubMed ID: 18550654]. [PubMed Central ID: PMC2518789]. https://doi.org/10.2215/CJN.00800208.

  • 32.

    Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575-82. [PubMed ID: 17911171]. https://doi.org/10.1210/jc.2007-1499.

  • 33.

    Parle JV, Franklyn JA, Cross KW, Jones SR, Sheppard MC. Circulating lipids and minor abnormalities of thyroid function. Clin Endocrinol (Oxf). 1992;37(5):411-4. [PubMed ID: 1486690]. https://doi.org/10.1111/j.1365-2265.1992.tb02351.x.

  • 34.

    Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160(4):526-34. [PubMed ID: 10695693]. https://doi.org/10.1001/archinte.160.4.526.

  • 35.

    Luboshitzky R, Aviv A, Herer P, Lavie L. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid. 2002;12(5):421-5. [PubMed ID: 12097204]. https://doi.org/10.1089/105072502760043512.

  • 36.

    Biondi B, Fazio S, Palmieri EA, Carella C, Panza N, Cittadini A, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 1999;84(6):2064-7. [PubMed ID: 10372711]. https://doi.org/10.1210/jcem.84.6.5733.

  • 37.

    Imaizumi M, Akahoshi M, Ichimaru S, Nakashima E, Hida A, Soda M, et al. Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J Clin Endocrinol Metab. 2004;89(7):3365-70. [PubMed ID: 15240616]. https://doi.org/10.1210/jc.2003-031089.

  • 38.

    Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med. 2005;165(21):2460-6. [PubMed ID: 16314541]. https://doi.org/10.1001/archinte.165.21.2460.

  • 39.

    Meier C, Staub JJ, Roth CB, Guglielmetti M, Kunz M, Miserez AR, et al. TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab. 2001;86(10):4860-6. [PubMed ID: 11600554]. https://doi.org/10.1210/jcem.86.10.7973.

  • 40.

    Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. 2007;92(5):1715-23. [PubMed ID: 17299073]. https://doi.org/10.1210/jc.2006-1869.

  • 41.

    Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, et al. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86(3):1110-5. [PubMed ID: 11238494]. https://doi.org/10.1210/jcem.86.3.7291.