International Journal of Endocrinology and Metabolism
Research Institute for Endocrine Sciences
Crossref
1. External validation of Prediabetes Risk Test in Indian population for screening prediabetes
- Radhika Aditya Jadhav
- G. Arun Maiya
- Shashikiran Umakanth
- K.N. Shivashankara
2. Identification of antibiotic resistance profiles in diabetic foot infections: A machine learning proof-of-concept analysis
- Rodrigo M. Carrillo-Larco
- Edmundo de Elvira Mori Orrillo
- Manuel Castillo-Cara
- Raúl García
- Marlon Yovera-Aldana
- Antonio Bernabe-Ortiz
3. Tailoring nursing interventions to empower patients: personal coping strategies and self-management in type 2 diabetes care
- Ateya Megahed Ibrahim
- Fatma Abd El Latief Gano
- Hassanat Ramadan Abdel-Aziz
- Nora H. Elneblawi
- Donia Elsaid Fathi Zaghamir
- Lobna Mohamed Mohamed Abu Negm
- Rasha Kamal Mohamed Sweelam
- Safaa Ibrahim Ahmed
- Heba Ahmed Osman Mohamed
- Fathia gamal elsaid hassabelnaby
- Aziza Mohamed Kamel
4. Prediction Models for Diabetes in Children and Adolescents: A Review
- Livija Cveticanin
- Marko Arsenovic
5. Letter to the Editor Regarding “Nationwide Prevalence of Diabetes and Prediabetes and Associated Risk Factors Among Iranian Adults: Analysis of Data from PERSIAN Cohort Study”
- Samaneh Asgari
- Davood Khalili
- Yadollah Mehrabi
- Farzad Hadaegh
6. Mean age and body mass index at type 2 diabetes diagnosis: Pooled analysis of 56 health surveys across income groups and world regions
- Rodrigo M. Carrillo‐Larco
- Wilmer Cristobal Guzman‐Vilca
- Xiaolin Xu
- Antonio Bernabe‐Ortiz
7. Statins and new-onset diabetes in primary prevention setting: an updated meta-analysis stratified by baseline diabetes risk
- Walter Masson
- Martín Lobo
- Leandro Barbagelata
- Juan P. Nogueira
8. The Semmelweis Study: a longitudinal occupational cohort study within the framework of the Semmelweis Caring University Model Program for supporting healthy aging
- Zoltan Ungvari
- Adam G. Tabák
- Roza Adany
- György Purebl
- Csilla Kaposvári
- Vince Fazekas-Pongor
- Tamás Csípő
- Zsófia Szarvas
- Krisztián Horváth
- Peter Mukli
- Piroska Balog
- Robert Bodizs
- Peter Ujma
- Adrienne Stauder
- Daniel W. Belsky
- Illés Kovács
- Andriy Yabluchanskiy
- Andrea B. Maier
- Mariann Moizs
- Piroska Östlin
- Yongjie Yon
- Péter Varga
- Zoltán Vokó
- Magor Papp
- István Takács
- Barna Vásárhelyi
- Péter Torzsa
- Péter Ferdinandy
- Anna Csiszar
- Zoltán Benyó
- Attila J. Szabó
- Gabriella Dörnyei
- Mika Kivimäki
- Miklos Kellermayer
- Bela Merkely
9. Developing a simple and practical decision model to predict the risk of incident type 2 diabetes among the general population: The [email protected] Study
- Sergio Martínez-Hervás
- María M. Morales-Suarez-Varela
- Irene Andrés-Blasco
- Francisco Lara-Hernández
- Isabel Peraita-Costa
- José T. Real
- Ana-Bárbara García-García
- F. Javier Chaves
10. Predicting diabetes-related conditions in need of intervention: Lolland-Falster Health Study, Denmark
- Søren Lophaven
- Neda Esmailzadeh Bruun-Rasmussen
- Therese Holmager
- Randi Jepsen
- Allan Kofoed-Enevoldsen
- Elsebeth Lynge
11. A meta‐analysis of diabetes risk prediction models applied to prediabetes screening
- Yujin Liu
- Sunrui Yu
- Wenming Feng
- Hangfeng Mo
- Yuting Hua
- Mei Zhang
- Zhichao Zhu
- Xiaoping Zhang
- Zhen Wu
- Lanzhen Zheng
- Xiaoqiu Wu
- Jiantong Shen
- Wei Qiu
- Jianlin Lou
12. Adding social determinants of health to the equation: Development of a cardiometabolic disease staging model using clinical and social determinants of health to predict type 2 diabetes
- Carrie R. Howell
- Shiori Tanaka
- Li Zhang
- April P. Carson
- Nengjun Yi
- James M. Shikany
- W. Timothy Garvey
- Andrea L. Cherrington
13. Gradient boosting decision tree becomes more reliable than logistic regression in predicting probability for diabetes with big data
- Hiroe Seto
- Asuka Oyama
- Shuji Kitora
- Hiroshi Toki
- Ryohei Yamamoto
- Jun’ichi Kotoku
- Akihiro Haga
- Maki Shinzawa
- Miyae Yamakawa
- Sakiko Fukui
- Toshiki Moriyama