Testosterone and Aggressive Behavior in Man

authors:

avatar Menelaos L. L. Batrinos 1 , *

Athens University Medical School, bithrini@ath.forthnet.gr, Greece

How To Cite Batrinos M L. Testosterone and Aggressive Behavior in Man. Int J Endocrinol Metab. 2012;10(3): 563-568. https://doi.org/10.5812/ijem.3661.

Abstract

Atavistic residues of aggressive behavior prevailing in animal life, determined by testosterone, remain attenuated in man and suppressed through familial and social inhibitions. However, it still manifests itself in various intensities and forms from; thoughts, anger, verbal aggressiveness, competition, dominance behavior, to physical violence. Testosterone plays a significant role in the arousal of these behavioral manifestations in the brain centers involved in aggression and on the development of the muscular system that enables their realization. There is evidence that testosterone levels are higher in individuals with aggressive behavior, such as prisoners who have committed violent crimes. Several field studies have also shown that testosterone levels increase during the aggressive phases of sports games. In more sensitive laboratory paradigms, it has been observed that participants testosterone rises in the winners of; competitions, dominance trials or in confrontations with factitious opponents. Aggressive behavior arises in the brain through interplay between subcortical structures in the amygdala and the hypothalamus in which emotions are born and the prefrontal cognitive centers where emotions are perceived and controlled. The action of testosterone on the brain begins in the embryonic stage. Earlier in development at the DNA level, the number of CAG repeats in the androgen receptor gene seems to play a role in the expression of aggressive behavior. Neuroimaging techniques in adult males have shown that testosterone activates the amygdala enhancing its emotional activity and its resistance to prefrontal restraining control. This effect is opposed by the action of cortisol which facilitates prefrontal area cognitive control on impulsive tendencies aroused in the subcortical structures. The degree of impulsivity is regulated by serotonin inhibiting receptors, and with the intervention of this neurotransmitter the major agents of the neuroendocrine influence on the brain process of aggression forms a triad. Testosterone activates the subcortical areas of the brain to produce aggression, while cortisol and serotonin act antagonistically with testosterone to reduce its effects.

Full Text

Full text is available in PDF