To see figures, please refer to the PDF file.
Background:
There are many conditions in medicine that decision making has crucial importance to differentiate between binary diagnoses, such as preoperative discrimination of benign from malignant tumors, e.g. uterine neoplasms. Physicians are not usually able to pool multiple parameters affecting the diagnosis, while “machine learning” techniques, especially “decision trees” with human-readable results, can process such amounts of data. Previous studies have shown that MRI could be helpful in the differentiation of uterine leiomyosarcoma from leiomyoma.