To see figures, please refer to the PDF file.
Background:
Machine learning is now a powerful tool to help improve medical disorders diagnosis. One of its critical applications is the classification or clustering of neurodegenerative disease by pattern recognition methods based on biomedical signals and medical images. Early detection of these diseases is always useful and vital. In this study, we focused on Alzheimer’s disease (AD) as a type of dementia leading to problems with memory, thinking, and behavior. This disease was named after Dr. Alois Alzheimer in 1906 when he inspected a female patient who died of an unusual mental illness. According to recent studies, four stages are introduced for AD, including pre-dementia, early AD, moderate AD, and advanced AD. There are several methods for AD diagnosis that include mental status evaluation, physical exam, and neurological exam, based on different imaging techniques such as magnetic resonance imaging (MRI). Several methods have been introduced until now for the classification and detection of AD using machine learning algorithms, such as the classification of AD with discrete wavelet transform (DWT) and single linear discriminant analysis (LDA) classifiers and differentiation of AD from normal based on T2-weighted MRI with shearlet transform (ST) and K-nearest neighbors (KNN) classifiers.