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Abstract

Background: Pre-operative glial brain tumor grading could determine the management. Perfusion weighted magnetic resonance
imaging (PWMRI) is a promising modality for assessment and management of brain lesions.
Objectives: In this study, we assessed the diagnostic efficacy of this method in the grading of supratentorial gliomas using 3 Tesla
MRI.
Patients and Methods: Using a 3 Tesla MRI unit, 35 (20 male, and 15 female) patients with glioma were examined one month before
surgery. Imaging protocol was: 615 slices, field of view (FOV) 22 × 22 cm2 T1W spin echo: repetition time (TR) 500 -echo time (TE) 30
and (FOV) 22 × 22 cm2 T2W Turbo spin echo: TR 5000 -TE 90. Then 15 cc gadolinium was injected at the rate of 3cc/s and imaging
was repeated with: TR: 2360 TE: 45, flip angle 90, band width 1346 echo planar imaging (EPI) 128 measurement 50. Mean transit time
(MTT), cerebral blood flow (CBF) and cerebral blood volume (CBV) were measured at enhancing and edematous regions compared
to contralateral white matter. Then, an appropriate biopsy was performed from different sites of the tumor during surgical excision.
Standard hispathological examination that was assessed in a double-blinded manner, was considered as gold standard.
Results: Patients’ tumor distribution was grade IV in 14 (40%), grade II in 14 (40%), grade III in six (17.1%) and grade I in one (2.9%).
Relative CBF (rCBF), and rCBV was significantly more in high-grade glioma (HGG) versus low-grade glioma (LGG) (P < 0.001 and P
< 0.009, respectively) and rCBF difference was more than rCBV but it was not significant. MTT was statistically the same in both
groups and there was no difference between them. A value of rCBV greater than 2 showed a sensitivity of 90% and specificity of 67%
and rCBF greater than 1.4 showed a sensitivity of 100% and a specificity of 74% in discrimination of high grade gliomas versus low
grade gliomas.
Conclusion: PWMRI is more accurate than conventional MRI for noninvasive discrimination of low-grade glioma (LGG) and high-
grade glioma (HGG) that could be helpful for neurosurgeons in decision making dealing with the most common tumor of the brain.
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1. Background

Gliomas are the most common brain tumors (1). They
are classified in four groups based on histopathological
grading (grades I-IV). In a patient suspected of having cere-
bral glioma, noninvasive preoperative evaluation of brain
tumor grade is important for treatment planning and pre-
diction of prognosis (grades III and IV versus grades I and
II; this classification and differentiation is important in
selecting surgical versus non surgical treatments) (2, 3).
Stereotactic biopsy has some drawbacks, such as invasive-
ness, potential complications such as intracerebral hem-
orrhage, and spatial limitation in sampling that could be

misleading. Therefore, conventional magnetic resonance
imaging (MRI) has been considered to be an established
and useful noninvasive tool in brain tumor grading (4, 5),
but conventional MRI-based tumor grading may lead to
low-grade or high-grade misclassification in some cases
because enhancement in conventional MRI is based on
blood brain barrier disruption and not neovascularity and
neoangiogenesis, which is more important in glioma grad-
ing (2). MR perfusion weighted imaging (PWI) can assess
cerebral blood flow (CBF) and cerebral blood volume (CBV),
which is more related to tumor vascularity (6); so, it is a use-
ful modality for the diagnosis of various intracranial dis-
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eases including ischemia (7, 8), neoplastic lesions (9, 10),
radionecrosis (11), and abscess (12). Although studies with
1.5T PW MRI have been performed to predict the patho-
logic grade of gliomas (10, 13-17), some studies have yielded
somewhat different results (16, 18). With the integration
of 3T MR into clinical practice, there has been growing in-
terest in the practical improvement of PW MRI at 3T with
respect to the established magnetic field strength of 1.5T,
because image quality and spatial resolutions depend lin-
early on the magnetic field (2).

2. Objectives

In this study, we evaluated the efficacy of 3T MR PWI
in the discrimination of high-grade gliomas (HGGs) ver-
sus low grade gliomas (LGGs) and tried to find appropriate
rCBV and rCBF cut off points for this purpose by 3T MR PWI.

3. Patients and Methods

Thirty-five patients (20 male, 15 female, mean age: 44.5
± 19 years, age range: 12 - 84 years) with primary MR
imaging diagnosis of glioma who were referred to a neu-
rosurgery clinic were enrolled consecutively in the study
and their data on MRI and histopathology (as gold stan-
dard) were gathered prospectively. Pediatric or posterior
fossa tumors were excluded due to the possibility of differ-
ent perfusions. All patients had a radiographic diagnosis
of glioma and were further examined using a 3Tesla Trio
Siemens MRI unit one month before surgery. Imaging pro-
tocol was: 615 slices, FOV 22 × 22 cm2 T1W spin echo: TR
500 -TE 30 and FOV 22 × 22 cm2 T2W Turbo spin echo: TR
5000 -TE 90. Then, 15 cc gadolinium was injected at the rate
of 3 cc/s and again the image was acquired with: TR: 2360
TE: 45, flip angle 90, band width 1346 echo planar imaging
(EPI) 128 measurement 50. Mean transit time (MTT)-CBF-
CBV was measured at enhancing and edematous region in
comparison with the contralateral white matter. Then an
appropriate surgical biopsy was performed from different
sites of the tumor during complete excision. Standard his-
pathological examination that was assessed in a double-
blinded manner, was considered as gold standard and per-
formed within 2 weeks after PW MRI. Then according to
world health organization (WHO) classification grade I and
II were categorized as low grade, and grade III and IV were
considered as high grade glioma (19). Three MTT, CBF, and
CBV parameters were compared with each other in both
groups (Figures 1 and 2) and analyzed individually with
SPSS ver. 18 software (SPSS Inc. Released 2009. PASW Statis-
tics for Windows, Version 18.0. Chicago: SPSS Inc.). The

radiologist who assessed the MRIs was blinded regarding
pathology results and clinical data. The mean of contin-
uous variables were compared with each other by t-test if
they showed normal distribution in Kolmogorov-Smirnov
test; otherwise, they were compared by U Mann Whitney
test. We used receiver operating characteristic (ROC) anal-
ysis for assessing the efficacy of continuous variables in dif-
ferentiating HGGs versus LGGs using the area under the
curve (AUC). P values lower than 0.05 were considered sta-
tistically significant. Ninety percent confidence intervals
were calculated for all diagnostic indices.

4. Results

Among 35 patients enrolled in the study, 20 (57%) had
HGG and 15 (43%) had LGG. In this study, 13 (65%) of the 20
males and seven (47%) of the 15 females had HGG. Patho-
logic reports are summarized in Tables 1 and 2.

Table 1. Distribution of Different Glioma Grades Among Patients

Grade No. (%)

Grade I 1 (2.9)

Grade II 14 (40)

Grade III 6 (17.1)

Grade IV 14 (40)

Table 2. Different Pathological Diagnoses Among Patients

Pathology No. (%)

Astrocytoma grade I 1 (2.9)

Astrocytoma grade II 8 (23)

Fibrillary astrocytoma grade II 2 (5.7)

Anaplastic astrocytoma grade III 3 (9)

Glioblastoma Grade IIII 14 (40)

Oligoastrocytoma grade II 1 (2.9)

Oligodendroglioma grade II 3 (9)

Oligodendroglioma grade III 3 (9)

The mean ± SD age of the patients with LGG and HGG
were 33.9 ± 16.7, and 52.3 ± 16.8; respectively (P < 0.003).

The mean perfusion data were compared between LGG
and HGG groups (Table 3). Relative CBF and relative CBV
was significantly higher in HGG group compared to LGG (P
< 0.001, and P = 0.009, respectively) and rCBF difference
was more than rCBV, but it was not significant statistically.
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Figure 1. MR perfusion in low-grade glioma in a 12-year-old girl

Figure 2. MR perfusion in high-grade glioma in a 60-year-old man

MTT was the same in both groups and there was no differ-
ence between them (P < 0.31).

We assessed the diagnostic efficacy of rCBV and rCBF in
differentiating HGG from LGG by receiver operating char-
acteristic (ROC) curve analysis and used the area under the
curve (AUC) for this purpose. The AUC of rCBV and rCBF
were 0.77 and 0.85, respectively (both P values < 0.01) (Ta-
ble 4 and Figure 3).

We calculated diagnostic indices of rCBV and rCBF in
selected cut off points that were chosen based on the best

diagnostic indices regarding sensitivity, specificity or both.
The results have been mentioned in Table 5.

In our study, we found rCBV≥ 2 has 90% sensitivity and
67% specificity and rCBF≥ 1.4 has 100% sensitivity and 74%
specificity in discrimination of LGG vs. HGG.

5. Discussion

This study presents the first prospective evaluation of
3T MR PWI in untreated glioma in Iran. The aim of this
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Table 3. Comparison of Perfusion Data Between High Grade and Low Grade Gliomas

Mean ± SD P value

rCBV
Low grade 2.34 ± 1.82

0.009

High grade 4.1 ± 1.91

rCBF
Low grade 1.57 ± 0.87

< 0.001

High grade 3.44 ± 1.81

rMTT
Low grade 1.68 ± 0.94

0.64

High grade 1.53 ± 1

Abbreviations: rCBF, Relative cerebral blood flow; rCBV, Relative cerebral blood
volume; rMTT, Relative mean transit time; SD, Standard deviation.
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Figure 3. Receiver operating characteristic (ROC) curves of relative cerebral blood
volume (rCBV) and relative cerebral blood flow (rCBF) for differentiating high grade
glioma (HGG) from low grade glioma (LGG)

study was to assess the potency of 3T MR PWI in the pre-
diction of the grade of glioma and differentiation of the
grade of LGG from HGG noninvasively in comparison with
pathology grade as gold standard as well as its importance
in the management and prognosis of these two pathology
group classifications.

Conventional MRI accuracy in predicting the grade of
glioma was reported between 55% and 83.3% (13, 20-22). In
another study, for differentiation of LGG from HGG with
contrast enhanced MRI differentiation, 72% sensitivity and
48% specificity was reported (23). Enhancement pattern in
conventional MRI is related to disruption of blood brain
barrier (24) and partially related to the grade of glioma (4)
but not exactly proportionate to neovascularity and neoan-

giogenesis. Hyper vascularity, which is one of most impor-
tant criteria in pathologic grading (3, 25) is more corre-
lated with PWI (3, 9, 25).

In our study with 3T MRI, relative CBF, and CBV in the
HGG group was significantly higher than the LGG (P <
0.001, P < 0.009, respectively) and rCBF difference was
higher than rCBV, but it was not significant statistically.
MTT was similar in both groups and there was no differ-
ence between them (P < 0.31), which is not helpful.

In our study, we found rCBV more than 2 has 90% sen-
sitivity and 67% specificity with PPV equal to 78%. Besides,
rCBF more than 1.4 has 100% sensitivity and 53% specificity
with PPV equal to 74% in discrimination of LGG versus HGG,
both of which were significantly higher than conventional
MRI. Another way rCBV ≥ 6.5 has 100% specificity and sen-
sitivity but rCBF≥ 3.25 with same specificity (100%) has 45%
sensitivity which can be more helpful. Mean age was signif-
icantly higher in HGG group (52y in HGG vs. 33y in LGG, P <
0.003). So, if we consider the combination of age and rCBF,
it could be a more accurate variant in differentiation.

In many studies similar to our study, rCBF and rCBV in
the HGG group was significantly higher than LGG (12), but
the accuracy between them was different. In some studies,
rCBV was selected and in others, rCBF was selected and re-
ported cut off points were different (18, 26).

Weber and colleagues in their study on 79 patients,
used rCBF ≥ 1.4 for discrimination of glioblastomas from
grade 3 gliomas and found a sensitivity of 97% and speci-
ficity of 50%, and their sensitivity and specificity for rCBF
≥ 1.6 in discrimination of glioblastomas from grade 2
gliomas were 94% and 78% (26). Their results are similar
to our study with rCBF ≥ 1.4.

Despite the above mentioned study, Arvinda et al. have
used rCBV for discrimination of HGG and LGG (18). For rCBV
≥ 2.91, their sensitivity and specificity was 94% and 93%, re-
spectively which is different from our results for rCBV≥ 2.
This may be due to a less rCBV that was used in our study in
comparison with Arvina and his colleagues.

One limitation of our study was the low sample size,
which was due to multiple factors including exclusion of
posterior fossa and children tumors. This limitation de-
creased our precision in estimating 95% confidence inter-
vals of diagnostic indices mentioned in Table 5. Of course,
when interval estimation is narrower, the precision for cor-
rect estimation of the statistics is better. Unfortunately,
finding more and sufficient patients is a time consuming
and difficult process that forced us to suffice with this low
sample size in each histopathologic grade. Another limi-
tation can be using one radiologist and one pathologist as
observer. Oligodendroglioma usually is a low grade glioma
but has more CBV and can mimic high grade glioma in
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Table 4. ROC Analysis and AUC for Differentiating High Grade Glioma (HGG) Versus Low Grade Glioma (LGG)a

Variable AUC Std. Error P value 95% Confidence Interval

Lower Bound Upper Bound

rCBV 0.77 0.088 0.007 0.6 0.94

rCBF 0.85 0.064 0.000 0.728 0.98

Abbreviations: AUC, Area under the curve; CBV, Cerebral blood volume; CBF, Cerebral blood flow; rMTT, Relative mean transit time; ROC, Receiver operating characteristic;
SD, Standard deviation.
aThe ROC of rMTT was not statistically significant.

Table 5. Diagnostic Efficacy Indices of the Selected Cut-off Points of Perfusion Variables

Cut-off
point

TP FN TN FP Sen (95%CI) Spec (95%CI) PPV (95%CI) NPV (95%CI) PLR (95%CI) NLR
(95%CI)

Accuracy
(95%CI)

rCBV1 ≥ 1.3 20 0 5 10 1 (0.83-1) 0.33
(0.12-0.62)

0.67
(0.47-0.83)

1 (0.48-1) 1.5 (1-2.1) - 0.71
(0.54-0.85)

rCBV2 ≥ 2 18 2 10 5 0.9
(0.68-0.98)

0.67
(0.38-0.88)

0.78
(0.56-0.93)

0.83
(0.52-0.98)

2.7 (1.3-5.6) 6.7
(1.7-26)

0.8
(0.63-0.93)

rCBV3 ≥ 3.2 13 7 11 4 0.65 (0.41-85) 0.73
(0.45-0.92)

0.76
(0.5-0.93)

0.61
(0.63-0.83)

2.4 (0.99-0.6) 2.1 (1.1-4.1) 0.69
(0.51-0.83)

rCBV4 ≥ 3.4 12 8 12 3 0.6
(0.36-0.81)

0.8
(0.52-0.96)

0.8
(0.52-0.96)

0.6
(0.36-0.81)

3 (1-8.8) 2 (1.1-3.6) 0.69
(0.51-0.83)

rCBV5 ≥ 6.5 2 18 15 0 0.1 (0.01-0.3) 1 (0.78-1) 1 (0.16-1) 0.45
(0.28-0.64)

- 1.1
(0.96-1.3)

0.49
(0.31-0.66)

rCBF1 ≥ 1.4 20 0 8 7 1 (0.83-1) 0.53
(0.27-0.79)

0.74
(0.54-0.89)

1 (0.63-1) 2.1 (1.2-3.7) - 0.8
(0.63-0.92)

rCBF2 ≥ 2 16 4 10 5 0.8
(0.56-0.94)

0.67
(0.38-0.88)

0.76
(0.53-0.92)

0.71
(0.42-0.92)

2.4 (1.1-0.1) 3.3
(1.3-8.6)

0.74
(0.57-0.88)

rCBF3 ≥ 2.26 15 5 11 4 0.75
(0.51-0.91)

0.73
(0.45-0.92)

0.79
(0.54-0.94)

0.69
(0.41-0.89)

2.8 (1.2-6.8) 2.9
(1.3-6.6)

0.74
(0.57-0.88)

rCBF4 ≥ 3.25 9 11 15 0 0.45
(0.23-0.68)

1 (0.78-1) 1 (0.66-1) 0.58
(0.37-0.77)

- 1.8
(1.2-2.7)

0.69
(0.51-0.83)

Abbreviations: CBF, Cerebral blood flow; CBV, Cerebral blood volume; FN; False negative; FP; False positive; NLR, Negative likelihood ratio; NPV, Negative predictive value;
PLR, Positive likelihood ratio; PPV, Positive predictive value; Sen, Sensitivity; Spec, Specificity TN; True negative; TP; True positive.

PW MRI. Tumor infiltration to adjacent tissues without
changes in vascularity is suboptimally characterized by PW
MRI.

In conclusion, perfusion weighted magnetic reso-
nance imaging (PWI) is a promising modality for noninva-
sive discrimination of LGG vs HGG and it is more accurate
compared with conventional MRI. So it can be helpful for
neurosurgeons in decision making dealing with glioma.
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