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Abstract

Background: Despite studies on positron emission tomography/magnetic resonance imaging (PET/MRI) in oncological imaging
with high soft-tissue contrast resolution, PET/MRI has not been studied in ophthalmology. 89Zr-bevacizumab, designed as a probe
for PET, targets vascular endothelial growth factor, which is highly expressed in ocular angiogenesis. Intravitreal injections of beva-
cizumab agents have curative effects on ocular disease.
Objectives: To study the ocular biodistribution of 89Zr-bevacizumab in New Zealand rabbits using PET/MRI.
Materials and Methods: 89Zr-bevacizumab, synthesized from conjugated bevacizumab and 89Zr-oxalate, and the purity of radio-
labeled antibodies were determined using radio high-performance liquid chromatography (radio-HPLC). Instant thin-layer chro-
matography (ITLC) was utilized to differentiate the labeled product from aggregates and unlabeled 89Zr. 89Zr-bevacizumab was
injected 2 mm from the left limbus into the vitreous humor of six normal New Zealand white rabbits. Micro-PET was utilized for
dynamic imaging from 5 minutes to 60 minutes postinjection and for static imaging at 4 hours, 24 hours, 48 hours, 120 hours, and
144 hours (10-minutes scans) postinjection. PET/MRI scans were fused using PMOD software.
Results: 89Zr-bevacizumab with a radiochemical purity of 93.21% was monitored via PET imaging. Radioactivity levels in the eyes
plateaued approximately 5 minutes after administration of 89Zr-bevacizumab, and the measured vitreous values decreased from
340.52 ± 41.6% injected dose (ID)/g to 21.53 ± 3.39%ID/g by 144 hours. The half-life of the drug in the eye was calculated for 84.25
hours.
Conclusion: 89Zr-bevacizumab could be monitored in animals by PET imaging, and the radiolabel exhibited high sensitivity in the
vitreous body. Radioactivity levels in the eyes plateaued approximately 5 minutes after administration. This study clearly demon-
strates the biodistribution of 89Zr-bevacizumab.
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1. Background

Positron emission tomography/magnetic resonance

imaging (PET/MRI) has been studied in oncological imag-

ing. The advantages of this approach include its lower

ionizing radiation (1); high soft-tissue contrast resolution

[e.g., for head and neck (2, 3), pelvic, and cervical cancer

(4)]; and, in certain situations (e.g., cancer recurrence), a

wider range of acquisition sequences compared with that

of computed tomography (CT) (5). However, PET/MRI has

not been studied in the context of ophthalmic examina-

tions.

Vascular endothelial growth factor (VEGF), an effective

endothelial cell mitogen, leads to the angiogenic growth

of new blood vessels by stimulating proliferation, migra-

tion and tube formation (6). VEGF is vital in ocular angio-

genesis and is highly expressed in retinopathy of prematu-

rity (6), diabetic retinal disease (7) and aging diseases of the

eye (8). In recent years, anti-VEGF treatment has become a

first-line therapy in choroidal neovascularization (exuda-

tive maculopathy). This approach is also used (off-label) to

treat corneal neovascularization (9, 10).

Bevacizumab, a humanized monoclonal full-length an-

tibody involved in the antiangiogenic response, is targeted
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to VEGF, and 89Zr-bevacizumab is a probe designed for PET.

Molecular imaging can be applied to visualize and poten-

tially quantify functional differences between tumor and

normal cells for primary breast cancer (11, 12), renal cell car-

cinoma (13), neuroendocrine tumors (14), ovarian cancer,

and others (15, 16). Additionally, VEGF can be noninvasively

visualized via PET imaging when the tracer 89Zr-labeled be-

vacizumab is used.

Since VEGF is a crucial mediator of abnormal vascular

permeability in retinopathy of prematurity, diabetic mac-

ular edema (17, 18) and age-related macular degeneration

(ADM) (19, 20), the curative effects of intravitreal injections

of bevacizumab agents are unsurprising. Although beva-

cizumab is not approved for ophthalmologic treatment, it

is used in the treatment of exudative AMD despite being

off-label for this application (21, 22). Bevacizumab demon-

strated good efficacy and safety in a series of randomized

clinical trials, producing results superior to those of laser

photocoagulation of the macula with less myopia (23-25).

For retinopathy of prematurity, bevacizumab treatment

also has a positive effect, tending to improve vision; in

this context, the morphological characteristics of retinal

anatomy may predict visual function (26, 27). Despite the

effects of bevacizumab in ocular treatment, the absorp-

tion and distribution of bevacizumab in eyes have rarely

been studied. Traditionally, the distribution and duration

of bevacizumab in rabbit eye tissues have been observed

by immunofluorescence staining, which is invasive and

can greatly differ across groups (28). PET/MRI allows for

the noninvasive, quantitative, and repeatable acquisition

of analytic information on molecules, biological processes

and anatomical properties in living organisms (29).

2. Objectives

In this study, we aimed to assess the feasibility of

PET/MRI to evaluate normal New Zealand white rabbit eyes

with 89Zr-bevacizumab as a probe. Furthermore, we aimed

to study the ocular distribution of bevacizumab. PET/MRI

represents a novel method for ophthalmic examination.

Moreover, this study provides pharmacokinetic proof of

the feasibility of utilizing bevacizumab in ocular treat-

ment.

3. Materials and Methods

3.1. Conjugation and 89Zr Labeling of Bevacizumab
89Zr has a decay half-life of 78.4 hours, the mean β-

energy is 395.5 keV, the positron branching fraction is

22.74%, and the main γ-emissions are 511 keV (45.5%) and

909 keV (99.04%). 89Zr-bevacizumab was produced as pre-

viously described by Nagengast et al. (30). Briefly, beva-

cizumab was purified from excipients using a protein de-

salting 10 (PD10) column. Next, the conjugation of purified

bevacizumab was achieved using deferoxamine (DFO). The

ester and bevacizumab were conjugated at room temper-

ature for 1 hour at pH 9 with 1.5 - 2.5 chelating groups per

antibody molecule. Then, the mixture was purified again

using a PD10 column. 89Zr-oxalate was dissolved in oxalic

acid, mixed for 3 minutes at pH 3.9 - 4.2, adjusted to pH 7

with sodium carbonate (Na2CO3), and then used for label-

ing. Modified bevacizumab was added and incubated in
89Zr-oxalate solution for 40 minutes at room temperature.

The crude product was purified with a PD10 column.

3.2. Quality Control for 89Zr-Bevacizumab

Modified bevacizumab was examined using high-

performance liquid chromatography (HPLC). The HPLC pa-

rameters were a chromatographic column of 7.8 mm ×
300 mm (TSK gel G3000SWXL), an ultraviolet (UV) wave-

length of 280 nm, isocratic elution, a flow rate of 0.8

mL/min, and a mobile phase of 0.1 M phosphate-buffered

saline (PBS) aqueous solution (pH 7.4). The radiochemi-

cal purity of radiolabeled antibodies was determined us-

ing radio-HPLC. Instant thin-layer chromatography (ITLC)

(FLOW COUNT; Eckert & Ziegler), using 0.15 mol/L citrate

buffer (pH 6.0) as the mobile phase, was utilized to dif-

ferentiate the labeled product from aggregates and unla-

beled 89Zr.

3.3. Stability of 89Zr-Bevacizumab

The stability of 89Zr-bevacizumab was determined by

storing the final product (1 mg, 50 megabecquerel [MBq])

at 4°C for 7 days. Radio-HPLC was performed 1 hour, 4 hours,

24 hours, 48 hours, 96 hours, and 168 hour after labeling.

3.4. MRI andMicro-PET

The work was conducted with the formal approval of

the Beijing Association on Laboratory Animal Care. We

anesthetized six rabbits with isoflurane (5% for induction

and 1.5% - 2% for maintenance in 70% N2O/30% O2). The

body temperature of each rabbit was maintained at 39°C.

MR acquisition was initiated as soon as the rabbits were

placed in supine position in the scanner. T2-weighted im-

ages (T2WI) were obtained prior to the injection of 89Zr-

bevacizumab into New Zealand white rabbits. PET images

were acquired using a dedicated micro-PET system (BioCal-

iburn 700). After undergoing a 10-minutes transmission
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scan, rabbits were injected 2 mm from the corneal limbus

into the vitreous humor of the left eye with 25 µL 100 µCi
89Zr-bevacizumab. PET was used for dynamic imaging from

5 minutes to 60 minutes and for static imaging at 4 hours,

24 hours, 48 hours, 120 hours, and 144 hours (10 minutes

scans) after 89Zr-bevacizumab injection.

An iterative ordered subset expectation maximization

two-dimensional (OSEM-2D) algorithm was used to recon-

struct the images. Attenuation and scatter corrections

were applied. These parameters allowed for acquisition

of the percent injected dose per gram of tissue-time (%ID-

time) and standardized uptake value (SUV)-time curves for

the eyes. PET image visualization, processing, and analyses

were performed using PMOD software, version 3.1 (PMOD

Technologies, Zurich, Switzerland).

3.5. Statistical Analyses

All quantitative data are expressed as the mean± stan-

dard deviation (SD). An iterative OSEM-2D algorithm was

used for reconstruction of the images. PET/MRI scans were

fused using PMOD software, version 3.1.

4. Results

4.1. Radiolabeling and Quality Control

After bevacizumab was modified with DFO, the DFO-

bevacizumab product had a chemical purity of 94.30%, as

determined using HPLC (Figure 1). When marker produc-

tion was complete, the radiochemical purity of the final

product, 89Zr-bevacizumab, was 93.21% as determined us-

ing radio-HPLC. The total proportion of polymer impurity

was 6.79%, and free zirconium was not found (Figure 2).

The specific activity of 89Zr-bevacizumab was 58 MBq/mg.

These results demonstrate that bevacizumab can be la-

beled with 89Zr with high labeling efficiency.

The retention time and purity for bevacizumab were

9.900 minutes and 94.30%, respectively.

The retention time and radiochemical purity for 89Zr-

bevacizumab were 10.006 minutes and 93.21%, respectively.

4.2. In Vitro Evaluation of Radiolabeled Compounds

89Zr-bevacizumab stored at 4°C exhibited a small de-

crease (4%) in protein-bound radioactivity after 168 hours.

4.3. PET/MRI Studyof 89Zr-Bevacizumab inNormalNewZealand

White Rabbits

PET images acquired between 5 minutes and 144 hours

after an injection of 25 µL 3.7 MBq 89Zr-bevacizumab are

shown below, including those obtained via dynamic imag-

ing from 5 minutes to 60 minutes (Figure 3) and static

imaging at 4 hours, 24 hours, 48 hours, 120 hours, and

144 hours (10 minutes scans) (Figure 4). Research was per-

formed in accordance with National Institutes of Health

(NIH) guidelines. Fused PET/MRI images revealed the tem-

poral biodistribution of 89Zr-bevacizumab in rabbit eyes.

In New Zealand white rabbits, a high level of radioac-

tivity was observed in eyes (Figure 5A). The percent in-

jected dose per gram of tissue (%ID/g)-time curves in Fig-

ure 5A show that the radioactivity level in eyes plateaued

approximately 5 minutes after the administration of 89Zr-

bevacizumab. The SUV time curves in Figure 5B indicate the

remaining quantities of 89Zr-bevacizumab in rabbit eyes.

Radioactivity levels in eyes plateaued approximately 5

minutes after the 89Zr-bevacizumab administration, and

the measured vitreous values decreased from 340.52 ±
41.6% ID/g to 21.53± 3.39% ID/g by 144 hours. The drug half-

life in eyes was calculated for 84.25 hours. Over time, 89Zr-

bevacizumab was detected from the injected area to the

whole vitreous body. Moreover, a small amount may have

entered the aqueous fluid, accompanied by a decrease in

positron emission.

5. Discussion

Neovascularization occurs in several ocular diseases,

such as exudative AMD (9), proliferative diabetic retinopa-

thy (7), and retinopathy of prematurity (21). VEGF, a major

factor inducing the formation of new vessels, acts via its

receptors in ocular diseases. Anti-VEGF therapy is as an ef-

fective treatment for such diseases (9). For these diseases,

early damage is often invisible upon clinical examination.

VEGF-related approaches may allow for early examinations

of ocular diseases.
89Zr (t1/2 = 78.4 hours), which has been exploited for PET

studies of antibodies, has the advantages of facile labeling

procedures and a relatively long decay time (16). Here, we

utilized 89Zr to evaluate the distribution of bevacizumab

over 144 hours (1 week). We used PET/MRI instead of a tradi-

tional approach to study ocular pharmacokinetic proper-

ties. Using noninvasive PET/MRI technology, we observed

the ocular biodistribution of bevacizumab in the vitreous

chamber compartment of the same animal for as long as
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HPLC Results for Modified Bevacizumab 
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Figure 1. High-performance liquid chromatography (HPLC) results for modified bevacizumab

Radio-HPLC Results for 89Zr-Bevacizumab 
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Figure 2. Radio- high-performance liquid chromatography (HPLC) results for 89Zr-bevacizumab

144 hours following intravitreal administration. Isotope la-

beling is a new method for ocular pharmacokinetic stud-

ies. Since the blood-eye barrier may block bevacizumab in

the bloodstream from entering the eyes, using traditional

methods to track drugs in eyes is difficult.

In conclusion, 89Zr-bevacizumab can be monitored via

PET imaging in animals, and this radiolabeling approach

exhibits high sensitivity in vitreous humors. Using nonin-

vasive PET/MRI technology, we observed the ocular biodis-

tribution of bevacizumab in the vitreous chamber com-

partment in the same animal for as long as 144 hours

following intravitreal administration. This study clearly

demonstrated the biodistribution of 89Zr-bevacizumab.

Moreover, PET/MRI represents a novel ophthalmic exami-

nation method.
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Figure 3. Fused positron emission tomography/magnetic resonance imaging (PET/MRI) images obtained via dynamic imaging from 5 minutes to 60 minutes after 89Zr-
bevacizumab injection

Figure 4. Fused positron emission tomography/magnetic resonance imaging (PET/MRI) images obtained via static imaging after 89Zr-bevacizumab injection
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