Nutrigenomics: A New Approach to Feed Formulation

authors:

avatar Seyed Reza Hashemi 1 , * , avatar Homa Davoodi ORCID 2 , avatar Elnaz Arabiyan 1

Department of Genetics, Breeding and Physiology of Livestock and Poultry, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
Department of Immunology, Faculty of Medical Science, Golestan University of Medical Science, Gorgan, Iran.

how to cite: Hashemi S R, Davoodi H, Arabiyan E. Nutrigenomics: A New Approach to Feed Formulation. J Inflamm Dis. 2020;24(1):e156203. 

Abstract

Nutrigenomics is the study of the effect of nutrition on gene expression which discusses how DNA is converted to mRNA and then converted mRNA to protein, and is the basis for understanding the biological activity of edible compounds. Nutritional manipulations and nutritional approaches are key tools to influence the performance and health of organisms. Today, it has been shown that better nutrition of animals selected for further production has a beneficial effect on their function. Despite the importance of this issue in production systems, there are no ways to clearly explain the molecular mechanisms of these changes. This review study aimed to investigate nutrigenomics as a molecular approach to the expression of genes involved in the health and growth of organisms. Searching was conducted in Scopus, PubMed, ScienceDirect, IranMedex, and Google Scholar databases on the studies conducted during 1990-2018 by using the keywords: “nutrigenomics”, “gene expression”, “nutrients”, “food formulation”. Initial stage yielded 120 articles. After excluding conferences papers, 58 remained for the final review. There are a limited number of nutrigenomics studies on the laboratory and farm animals, but it has been confirmed that there is an association between nutrition, genetics, fertility and growth. Therefore, the use of nutrients that can express gene expression in a way that improves the function and efficiency of organisms is essential in feed formulation as a new approach in nutrition. 

References

  • 1.

    Bankston J. Francis Crick and James Watson: Pioneers in DNA research. Newark, Delaware: Mitchell Lane; 2003. https://books.google.com/books/about/Francis_Crick_and_James_Watson.html?id=9w25_TXCcRUC.

  • 2.

    Trinkle-Mulcahy L, Lamond AI. Nuclear functions in space and time: Gene expression in a dynamic, constrained environment. FEBS Lett. 2008; 582(14):1960-70. [DOI:10.1016/j.febslet. 2008.04.029] [PMID].

  • 3.

    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961; 3(3):318-56. [DOI:10.1016/S0022-2836(61)80072-7].

  • 4.

    Sandvik AK, Alsberg BK, Nrsett KG, Yadetie F, Waldum HL, Laegreid A. Gene expression analysis and clinical diagnosis. Clin Chim Acta. 2006; 363(1-2):157-64. [DOI:10.1016/j.cccn.2005.05.046] [PMID].

  • 5.

    Da-Costa LA, Badawi A, El-Sohemy A. Nutrigenetics and modulation of oxidative stress. Ann Nutr Metab. 2012; 60 Suppl: 27- 36. [DOI:10.1159/000337311] [PMID].

  • 6.

    Davoodi H, Hashemi SR, Seow HF. Increased NF-B activity in HCT116 colorectal cancer cell line harboring TLR4 Asp299Gly variant. Iran J Allergy Asthma Immunol. 2012; 11(2):121-32. [PMID].

  • 7.

    Rescigno T, Micolucci L, Tecce MF, Capasso A. Bioactive nutrients and nutrigenomics in age-related diseases. Molecules. 2017; 22(1):105. [DOI:10.3390/molecules22010105] [PMID] [PMCID].

  • 8.

    Hashemi SR, Davoodi H. Herbal plants as new immuno-stimulator in poultry industry: A review. Asian J Anim Vet Adv. 2012; 7(2):105-16. [DOI:10.3923/ajava.2012.105.116].

  • 9.

    Sharma P, Dwivedi S. Nutrigenomics and nutrigenetics: New insight in disease prevention and cure. Indian J Clin Biochem. 2017; 32(4):371-3. [DOI:10.1007/s12291-017-0699-5] [PMID] [PMCID].

  • 10.

    Nikitina D, Chen Z, Vallis K, Poll A, Ainsworth P, Narod SA, et al. Relationship between caffeine and levels of DNA repair and oxidative stress in women with and without a BRCA1 mutation. J Nutrigenet Nutrigenomics. 2015; 8(4-6):174-84. [DOI:10.1159/000439110] [PMID].

  • 11.

    Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015; 7(2):922-47. [DOI:10.3390/nu7020922] [PMID] [PMCID].

  • 12.

    Sapienza C, Issa JP. Diet, nutrition, and cancer epigenetics. Annu Rev Nutr. 2016; 36(4):665-81. [DOI:10.1146/annurev-nutr-121415-112634] [PMID].

  • 13.

    Afman L, Mller M. Nutrigenomics: From molecular nutrition to prevention of disease. J Am Diet Assoc. 2006; 106(4):569-76. [DOI:10.1016/j.jada.2006.01.001] [PMID].

  • 14.

    Friso S, Choi SW. Gene-nutrient interactions and DNA methylation. J Nutr. 2002; 132(8):2382S-7S. [DOI:10.1093/jn/132.8.2382S] [PMID].

  • 15.

    Mller M, Kersten S. Nutrigenomics: Goals and strategies. Nat Rev Genet. 2003; 4(4):315-22. [DOI:10.1038/nrg1047] [PMID].

  • 16.

    Simopoulos AP. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac J Clin Nutr. 2008; 17(3):131-4. [DOI:10.1016/j.biopha.2006.07.080] [PMID].

  • 17.

    Escriva H, Langlois MC, Mendona RL, Pierce R, Laudet V. Evolution and diversification of the nuclear receptor superfamily. Ann N Y Acad Sci. 1998; 839(11):143-6. [DOI:10.1111/j.17496632.1998.tb10747.x] [PMID].

  • 18.

    Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, et al. Genomic analysis of the nuclear receptor family: New insights into structure, regulation, and evolution from the rat genome. Genome Res. 2004; 14(4):580-90. [DOI:10.1101/gr.2160004] [PMID] [PMCID].

  • 19.

    Ames BN. Micronutrient deficiencies. A major cause of DNA damage. Ann N Y Acad Sci. 1999; 889(11):87-106.[DOI:10.1111/j.1749-6632.1999.tb08727.x] [PMID].

  • 20.

    Jenkins ES, Broadhead C, Combes RD. The implications of microarray technology for animal use in scientific research. Altern Lab Anim. 2002; 30(4):459-65. [DOI:10.1177/026119290203000408] [PMID].

  • 21.

    Nasulewicz A, Zimowska W, Bayle D, Dzimira S, Madej J, Rayssiguier Y, et al. Changes in gene expression in the lungs of Mg-deficient mice are related to an inflammatory process. Magnes Res. 2004; 17(4):259-63. [PMID].

  • 22.

    Maier JA, Nasulewicz-Goldeman A, Simonacci M, Boninsegna A, Mazur A, Wolf FI. Insights into the mechanisms involved in magnesium-dependent inhibition of primary tumor growth. Nutr Cancer. 2007; 59(2):192-8. [DOI:10.1080/01635580701420624] [PMID].

  • 23.

    Dawson KA. Nutrigenomics: Feeding the genes for improved fertility. Anim Reprod Sci. 2006; 96(3-4):312-22. [DOI:10.1016/j.anireprosci.2006.08.009] [PMID].

  • 24.

    Pahlavani M, Ramalho T, Koboziev I, LeMieux MJ, Jayarathne S, Ramalingam L, et al. Adipose tissue inflammation in insulin resistance: Review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids. J Investig Med. 2017; 65(7):1021-7. [DOI:10.1136/jim-2017-000535] [PMID].

  • 25.

    Ramezani A, Ramezani A. Role of nutrigenetics in controlling inflammation and cardiovascular disease risk factors: A narrative review. J Health Res Community. 2018; 4(1):49-64. [In Persian] http://jhc.mazums.ac.ir/article-1-110-en.html.

  • 26.

    Hashemi SR, Zulkifli I, Davoodi H, Zunita Z, Ebrahimi M. Growth performance, intestinal microflora, plasma fatty acid profile in broiler chickens fed herbal plant (Euphorbia hirta) and mix of acidifiers. Anim Feed Sci Tech. 2012; 178(3-4):167- 74. [DOI:10.1016/j.anifeedsci.2012.09.006].

  • 27.

    Roche HM. Dietary lipids and gene expression. Biochem Soc Trans. 2004; 32(10):999-1002. [DOI:10.1042/BST0320999] [PMID].

  • 28.

    Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim Biophys Acta. 2015; 1851(4):503-18.[DOI:10.1016/j.bbalip.2014.09.023] [PMID].

  • 29.

    Saboori S, Koohdani F, Nematipour E, Yosefi Rad E, Saboor- Yaraghi AA, Javanbakht MH, et al. Beneficial effects of omega 3 and vitamin E coadministration on gene expression of sirt1 and pgc1 and serum antioxidant enzymes in patients with coronary artery disease. Nutr Metab Cardiovas Dis. 2016; 26(6):489-94. [DOI:10.1016/j.numecd.2015.11.013] [PMID].

  • 30.

    Ramezani A, Djalali M. PPAR gene expression changes in patients with coronary artery disease. J Mazandaran Univ Med Sci. 2016; 26(142):68-81. [In Persian] http://jmums.mazums. ac.ir/article-1-8853-en.html.

  • 31.

    Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014; 15(4):6184-223. [DOI:10.3390/ijms15046184] [PMID] [PMCID].

  • 32.

    Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino acid nutrition in animals: Protein synthesis and beyond. Annu Rev Anim Biosci. 2014; 2:387-417. [DOI:10.1146/annurev-animal-022513-114113] [PMID].

  • 33.

    Kopple JD, Massry SG, Kalantar-Zadeh K. Nutritional management of renal disease. London: Academic Press; 2012. https:// books.google.com/books?id=4UDheedDOpoC&dq.

  • 34.

    Lord APD, Bastian SEP, Read LC, Walton PE, Ballard FJ. Differences in the association of insulin-like growth factor-I (IGF-I) and IGF-I variants with rat, sheep, pig, human and chicken plasma-binding proteins. J. Endocrinol. 1994; 140(3):475-82. [DOI:10.1677/joe.0.1400475] [PMID].

  • 35.

    Straus DS, Takemoto CD. Effect of dietary protein deprivation on insulin-like growth factor-I and -II, IGFbinding protein-2,and serum albumin gene expression in rat. Endocrinolo. 1990; 127(4):1849-60. [DOI:10.1210/endo-127-4-1849] [PMID].

  • 36.

    Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression. Biochem J. 2000; 351(Pt 1):1-12. [DOI:10.1042/0264-6021:3510001] [PMID] [PMCID].

  • 37.

    Herbeck JT, Wall DP, Wernegreen JJ. Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia. Microbiology. 2003; 149(3):2585-96. [DOI:10.1099/mic.0.26381-0] [PMID].

  • 38.

    Dang Do AN, Kimball SR, Cavener DR, Jefferson LS. eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol Genomics. 2009; 38(3):328-41. [DOI:10.1152/physiolgenomics.90396.2008] [PMID] [PMCID].

  • 39.

    Kimball SR, Anthony TG, Cavener DR, Jefferson LS. Nutrient signaling through mammalian GCN2. Top Curr Gen. 2004; 7:113-30. [DOI:10.1007/978-3-540-39898-1_6].

  • 40.

    Kimball SR, Jefferson LS. Amino acids as regulators of gene expression. Nutr Metab (Lond). 2004; 1(1):3. [DOI:10.1186/1743- 7075-1-3] [PMID] [PMCID].

  • 41.

    Qureshi MA, Havenstein GB. A comparison of the immune performance of a 1991 commercial broiler with a 1957 randombred strain when fed typical 1957 and 1991 boiler diets. Poult Sci. 1994; 73(12):1805-12. [DOI:10.3382/ps.0731805] [PMID].

  • 42.

    Hashemi SR, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun. 2011; 35(3):169-80. [DOI:10.1007/s11259-010-9458-2] [PMID].

  • 43.

    Yonash N, Cheng HH, Hillel J, Heller J, Cahaner A. DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult Sci. 2001; 80(1):22-8. [DOI:10.1093/ps/80.1.22] [PMID].

  • 44.

    Rao SV, Praharaj NK, Reddy MR, Sridevi B. Immune competence, resistance to Eschirichia coli and growth in male broiler parent chicks fed different levels of crude protein. Vet Res Commun, 1999; 23(6):323-6. [DOI:10.1023/A:1006318307103] [PMID].

  • 45.

    Maroufyan E, Kasim A, Hashemi SR, Loh TC, Bejo MH. Responses of performance and differential leukocyte count to methionine and threonine supplementations on broiler chickens challenged with infectious bursal disease in tropical condition. Asian J Biol Sci. 2010; 3(2):68-76. [DOI:10.3923/ajbs.2010.68.76].

  • 46.

    Quentin M, Bouvarel I, Picard M. Effects of starter diet, light intensity and essential amino acids level on growth and carcass composition of broilers. J Appl Poult Res. 2005; 14(1):69- 76. [DOI:10.1093/japr/14.1.69].

  • 47.

    Kidd MT, Gerard PD, Heger J, Kerr BJ, Rowe DE, Sistani D, et al. Threonine and crude protein responses in broiler chicks. Anim Feed Sci Techno. 2001; 94(1-2):57-64. [DOI:10.1016/S0377-8401(01)00301-7].

  • 48.

    Maroufyan E, Kasim A, Hashemi SR, Loh TC, Bejo MH. Change in growth performance and liver function enzymes of broiler chickens challenged with infectious bursal disease virus to dietary supplementation of methionine and threonine. Am J Anim Vet Sci. 2010; 5(1):20-6. [DOI:10.3844/ajavsp.2010.20.26].

  • 49.

    Silva ICM, Ribeiro AML, Canal CW, Vieira MM, Pinheiro CC, Gonalves T, et al. Effect of vitamin E levels on the cellmediated immunity of broilers vaccinated against coccidiosis. Braz J Poult Sci. 2011; 13(1):53-6. [DOI:10.1590/S1516-635X2011000100008].

  • 50.

    Lohakare JD, Kim JK, Ryu MH, Hahn TW, Chae BJ. Effect of vitamin C and vitamin D interaction on the performance, immunity and bone characteristics of commercial broilers. J Appl Poult Res. 2005; 14(4):670-8. [DOI:10.1093/japr/14.4.670].

  • 51.

    Fritts CA, Erf GF, Bersi TK, Waldroup PW. Effect of source and level of vitamin D on immune function in growing broilers. J Appl Poult Res. 2004; 13(2):263-73. [DOI:10.1093/japr/13.2.263].

  • 52.

    Butcher GD, Miles RD. Interrelationship of nutrition and immunity [Internet]. 2002 [Updated 2011 March]. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1 .487.8972&rep=rep1&type=pdf.

  • 53.

    Deyhim F, Teeter RG. Dietary vitamin and/or trace mineral premix effects on performance, humoral mediated immunity, and carcass composition of broilers during thermoneutral and high ambient temperature distress. J Appl Poult Res. 1993; 2(4):347-55. [DOI:10.1093/japr/2.4.347].

  • 54.

    Wang C, Wang MQ, Ye SS, Tao WJ, Du YJ. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci. 2011; 90(10):2223-8. [DOI:10.3382/ps.2011-01511] [PMID].

  • 55.

    Echeverry H, Yitbarek A, Munyaka P, Alizadeh M, Cleaver A, Camelo-Jaimes C, et al. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult Sci. 2016;95(3): 518-27. [DOI:10.3382/ps/pev374].

  • 56.

    Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC. Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol Trace Elem Res. 2004; 101(2):147-63. [DOI:10.1385/BTER:101:2:147].

  • 57.

    Hashemi SR, Davoodi H. Phytogenics as new class of feed additive in poultry industry. J Anim Vet Adv. 2010; 9(17):2295-304. [DOI:10.3923/javaa.2010.2295.2304].

  • 58.

    Rhrdanz E, Ohler S, Tran-Thi QH, Kahl R. The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr. 2002; 132(3):370-5. [DOI:10.1093/jn/132.3.370] [PMID].

  • 59.

    Hashemi SR, Zulkifli I, Somchit MN, Zunita Z, Loh TC, Soleimani AF, et al. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature. J Anim Physiol Anim Nutr (Berl). 2013; 97(4):632-8. [DOI:10.1111/j.1439-0396.2012.01302.x] [PMID].

  • 60.

    Hashemi SR. Selected herbal plants as growth and health promoters in broiler chickens [PhD. dissertation]. Seri Kembangan, Selangor: Universiti Putra Malaysia; 2009. https://core.ac.uk/download/pdf/43000714.pdf##.