Logo

Predicting the Prevalence of COVID-19 and its Mortality Rate in Iran Using Lyapunov Exponent

Author(s):
Fatemeh MohammadiFatemeh Mohammadi1,*, Saeedeh KouzehgariSaeedeh Kouzehgari2
1Department of Biomedical Engineering, Faculty of Medical Science and Technologies, Azad University, Science and Research Branch, Tehran, Iran.
2Department of International Relations, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.


Journal of Inflammatory Diseases:Vol. 24, issue 2; 108-123
Article type:Research Article
How to Cite:Fatemeh MohammadiSaeedeh KouzehgariPredicting the Prevalence of COVID-19 and its Mortality Rate in Iran Using Lyapunov Exponent.J Inflamm Dis.24(2):e156207.

Abstract

References

  • 1.
    Bauch, C. T. (2008). The role of mathematical models in explaining recurrent outbreaks of infectious childhood diseases. In Mathematical Epidemiology (pp. 297-319). Springer, Berlin, Heidelberg.
  • 2.
    Pourbohloul, B., Meyers, L. A., Skowronski, D. M., Krajden, M., Patrick, D. M., & Brunham, R. C. (2005). Modeling control strategies of respiratory pathogens. Emerging infectious diseases, 11(8), 1249.
  • 3.
    Ssematimba, A., Hagenaars, T. J., & De Jong, M. C. (2012). Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLoS One, 7(2).
  • 4.
    Briggs, A. D., Wolstenholme, J., Blakely, T., & Scarborough, P. (2016). Choosing an epidemiological model structure for the economic evaluation of non-communicable disease public health interventions. Population health metrics, 14(1), 17.
  • 5.
    Garnerin, P., & Valleron, A. J. (1992). The French communicable diseases computer network: a technical view. Computers in biology and medicine, 22(3), 189-200.
  • 6.
    Toubiana, L., & Vibert, J. F. (1998). A neural network model for the spread of communicable diseases. In Geomed97 (pp. 249-259). Vieweg+ Teubner Verlag, Wiesbaden.
  • 7.
    Perez, L., & Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International journal of health geographics, 8(1), 50.
  • 8.
    Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., ... & Dighe, A. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet infectious diseases.
  • 9.
    Silverman, J. D., Hupert, N., & Washburne, A. D. (2020). Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Science translational medicine, 12(554).
  • 10.
    CAO, S., FENG, P., & SHI, P. (2020). Study on the epidemic development of corona virus disease-19 (COVID-19) in Hubei province by a modified SEIR model. Journal of Zhejiang University (Medical Science), 49(1), 0-0.
  • 11.
    Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious diseases of poverty, 9(1), 1-8.
  • 12.
    Basiri, M. R. (2020). Theory about treatments and morbidity prevention of corona virus disease (covid-19). Journal of Pharmacy and Pharmacology, 8, 89-90.
  • 13.
    Alipour, A. & Ghadami, A. & Alipour, Z., & Abdollahzadeh, H. (2020). Preliminary Validation of the Corona Disease Anxiety Scale (CDAS) in the Iranian Sample, Quarterly Journal of Health Psychology, 8 (4), (series 32), 163-175.
  • 14.
    Pourghaznein, T., & Salati, S. (2020). National Approach in Response to the COVID-19 Pandemic in Iran. International Journal of Community Based Nursing and Midwifery, 8(3), 275.
  • 15.
    Dictionary, O. E. (2002), Concise Oxford English Dictionary.
  • 16.
    Chat, H., Villermaux, E., & Chomaz, J. M. (Eds.). (2012), Mixing: chaos and turbulence, Vol. 373, Springer Science & Business Media.
  • 17.
    Redondo Apraiz, J. M. (2014), "Turbulence, entropy and dynamics", lecture notes.
  • 18.
    Hashemi Golpayegani, S. M. R. (2009).Chaos and Its Applications in Engineering, Tehran: Amirkabir University of Technology Publication.
  • 19.
    Kouzehgari, s. (2018). Explanation of International System Behavior based on Chaos Principal, Case Study The Middle East Region, (Doctoral dissertation), Faculty of Humanities,Tarbiat Modares University.
  • 20.
    Kinsner, W. (2006). Characterizing chaos through Lyapunov metrics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(2), 141-151.
  • 21.
    Nazarimehr, F., Jafari, S., Golpayegani, S. M. R. H., & Sprott, J. C. (2017). Can Lyapunov exponent predict critical transitions in biological systems? Nonlinear Dynamics, 88(2), 1493-1500.
  • 22.
    Schuster, H. G. (1995). Deterministic Chaos, 3rd augm. ed.
  • 23.
    Nychka, D., Ellner, S., Gallant, A. R., & McCaffrey, D. (1992). Finding chaos in noisy systems. Journal of the Royal Statistical Society: Series B (Methodological), 54(2), 399-426.
  • 24.
    McCue, L. S., & Troesch, A. W. (2011). Use of Lyapunov exponents to predict chaotic vessel motions. In Contemporary Ideas on Ship Stability and Capsizing in Waves (pp. 415-432). Springer, Dordrecht.
  • 25.
    Abrishami, H., Moeini, A., & Ahrari, m. (2007). Using Lyapunov Exponent for Modeling Time Series of Oil Price Based on Logistic Map, Tahghighat- E- Eghtesadi, No. 76, pp. 77-100.
  • 26.
    Moeini Sedeh, S., et. al (2015). Nonlinear analysis of dynamic lumbar stability during repetitive trunk flexion extension at symmetric and asymmetric directions, Iranian Journal of Biomedical Engineering, 7(2014) 333-340.
  • 27.
    Ferriere, R., & Gatto, M. (1995). Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theoretical Population Biology, 48(2), 126-171.
  • 28.
    Babak Dehghanpisheh, (2020, March 4). Coronavirus has spread to nearly all Iran provinces: president, REUTERS, Retrieved at https://www.reuters.com/article/us-health-coronavirus-iran-rouhani/coronavirus-has-affected-almost-all-iranian-provinces-president/.
  • 29.
    Worldometer, (2020). COVID-19 Coronavirus Pandemic, Retrieved from https://www.worldometers.info/coronavirus/countries.
  • 30.
    Bonasera, A., & Zhang, S. (2020). Chaos, Percolation and the Coronavirus Spread. Frontiers in Physics, 8, 171.##.
comments

Leave a comment here

Share on
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles