Abstract
Keywords
COVID-19 Prevalence Mortality Iran Chaos theory Lyapunov exponent
References
-
1.
Bauch, C. T. (2008). The role of mathematical models in explaining recurrent outbreaks of infectious childhood diseases. In Mathematical Epidemiology (pp. 297-319). Springer, Berlin, Heidelberg.
-
2.
Pourbohloul, B., Meyers, L. A., Skowronski, D. M., Krajden, M., Patrick, D. M., & Brunham, R. C. (2005). Modeling control strategies of respiratory pathogens. Emerging infectious diseases, 11(8), 1249.
-
3.
Ssematimba, A., Hagenaars, T. J., & De Jong, M. C. (2012). Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLoS One, 7(2).
-
4.
Briggs, A. D., Wolstenholme, J., Blakely, T., & Scarborough, P. (2016). Choosing an epidemiological model structure for the economic evaluation of non-communicable disease public health interventions. Population health metrics, 14(1), 17.
-
5.
Garnerin, P., & Valleron, A. J. (1992). The French communicable diseases computer network: a technical view. Computers in biology and medicine, 22(3), 189-200.
-
6.
Toubiana, L., & Vibert, J. F. (1998). A neural network model for the spread of communicable diseases. In Geomed97 (pp. 249-259). Vieweg+ Teubner Verlag, Wiesbaden.
-
7.
Perez, L., & Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International journal of health geographics, 8(1), 50.
-
8.
Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., ... & Dighe, A. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet infectious diseases.
-
9.
Silverman, J. D., Hupert, N., & Washburne, A. D. (2020). Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Science translational medicine, 12(554).
-
10.
CAO, S., FENG, P., & SHI, P. (2020). Study on the epidemic development of corona virus disease-19 (COVID-19) in Hubei province by a modified SEIR model. Journal of Zhejiang University (Medical Science), 49(1), 0-0.
-
11.
Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious diseases of poverty, 9(1), 1-8.
-
12.
Basiri, M. R. (2020). Theory about treatments and morbidity prevention of corona virus disease (covid-19). Journal of Pharmacy and Pharmacology, 8, 89-90.
-
13.
Alipour, A. & Ghadami, A. & Alipour, Z., & Abdollahzadeh, H. (2020). Preliminary Validation of the Corona Disease Anxiety Scale (CDAS) in the Iranian Sample, Quarterly Journal of Health Psychology, 8 (4), (series 32), 163-175.
-
14.
Pourghaznein, T., & Salati, S. (2020). National Approach in Response to the COVID-19 Pandemic in Iran. International Journal of Community Based Nursing and Midwifery, 8(3), 275.
-
15.
Dictionary, O. E. (2002), Concise Oxford English Dictionary.
-
16.
Chat, H., Villermaux, E., & Chomaz, J. M. (Eds.). (2012), Mixing: chaos and turbulence, Vol. 373, Springer Science & Business Media.
-
17.
Redondo Apraiz, J. M. (2014), "Turbulence, entropy and dynamics", lecture notes.
-
18.
Hashemi Golpayegani, S. M. R. (2009).Chaos and Its Applications in Engineering, Tehran: Amirkabir University of Technology Publication.
-
19.
Kouzehgari, s. (2018). Explanation of International System Behavior based on Chaos Principal, Case Study The Middle East Region, (Doctoral dissertation), Faculty of Humanities,Tarbiat Modares University.
-
20.
Kinsner, W. (2006). Characterizing chaos through Lyapunov metrics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(2), 141-151.
-
21.
Nazarimehr, F., Jafari, S., Golpayegani, S. M. R. H., & Sprott, J. C. (2017). Can Lyapunov exponent predict critical transitions in biological systems? Nonlinear Dynamics, 88(2), 1493-1500.
-
22.
Schuster, H. G. (1995). Deterministic Chaos, 3rd augm. ed.
-
23.
Nychka, D., Ellner, S., Gallant, A. R., & McCaffrey, D. (1992). Finding chaos in noisy systems. Journal of the Royal Statistical Society: Series B (Methodological), 54(2), 399-426.
-
24.
McCue, L. S., & Troesch, A. W. (2011). Use of Lyapunov exponents to predict chaotic vessel motions. In Contemporary Ideas on Ship Stability and Capsizing in Waves (pp. 415-432). Springer, Dordrecht.
-
25.
Abrishami, H., Moeini, A., & Ahrari, m. (2007). Using Lyapunov Exponent for Modeling Time Series of Oil Price Based on Logistic Map, Tahghighat- E- Eghtesadi, No. 76, pp. 77-100.
-
26.
Moeini Sedeh, S., et. al (2015). Nonlinear analysis of dynamic lumbar stability during repetitive trunk flexion extension at symmetric and asymmetric directions, Iranian Journal of Biomedical Engineering, 7(2014) 333-340.
-
27.
Ferriere, R., & Gatto, M. (1995). Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theoretical Population Biology, 48(2), 126-171.
-
28.
Babak Dehghanpisheh, (2020, March 4). Coronavirus has spread to nearly all Iran provinces: president, REUTERS, Retrieved at https://www.reuters.com/article/us-health-coronavirus-iran-rouhani/coronavirus-has-affected-almost-all-iranian-provinces-president/.
-
29.
Worldometer, (2020). COVID-19 Coronavirus Pandemic, Retrieved from https://www.worldometers.info/coronavirus/countries.
-
30.
Bonasera, A., & Zhang, S. (2020). Chaos, Percolation and the Coronavirus Spread. Frontiers in Physics, 8, 171.##.