The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review

authors:

avatar Forough Alemi Serej 1 , avatar Hosein Aliyari Serej 2 , avatar Abbas Ebrahimi Kalan 3 , * , avatar Ahmad Mehdipour 4 , avatar Zeynab Aliyari Serej 5 , avatar Balal Bravan 6 , avatar Mohammad Reza Shiri-Shahsavar 7

Department of Veterinary, Faculty of Veterinary Medicine, Islamic Azad University of Tabriz, Tabriz, Iran.
Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad University of Tabriz. Tabriz, Iran.
Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran.

how to cite: Alemi Serej F, Aliyari Serej H, Ebrahimi Kalan A, Mehdipour A, Aliyari Serej Z, et al. The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review. J Inflamm Dis. 2020;24(5):e156247. 

Abstract

Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, especially in cancer stem-like cell.  Additionally, activation of this pathway in the most common malignant central nervous system cancers such as glioblastoma, medulloblastomas and tuberous sclerosis complex is under investigation. Recent studies have shown the relationship between different cellular signaling pathways and genetic mutations, that involved in the cancer of CNS, with mTOR pathway. Based on previous studies, different treatments like surgery, chemotherapy, radiotherapy, aren’t more effective and have some side-effects. Therefore, the researchers are trying to find better ways to treat cancer. One approach to this aim is about the essence of understanding all of molecular pathways, proteins and mutations involved in cancers. This study tries to analysis some of the unknown molecular pathways on mentioned cancerous cells and interaction among this pathway with mTOR kinase protein.

References

  • 1.

    Bozzone DM. Leukemia: Biology of cancer. New York: Infobase Publishing; 2009. https://books.google.com/ books?id=wxVbEUQA-hMC&dq.

  • 2.

    Brazvan B, Ebrahimi-Kalan A, Velaei K, Mehdipour A, Aliyari Serej Z, Ebrahimi A, et al. Telomerase activity and telomere on stem progeny senescence. Biomed Pharmacother. 2018; 102:9-17. [DOI:10.1016/j.biopha.2018.02.073] [PMID].

  • 3.

    Russell DS, Rubinstein LJ. Pathology of tumours of the nervous system. 4th ed. London: Edward Arnold; 1977.

  • 4.

    Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: A review of neurological aspects. Eur J Paediatr Neurol. 2002; 6(1):15-23. [DOI:10.1053/ejpn.2001.0538] [PMID].

  • 5.

    Frankel SA, German WJ. Glioblastoma multiforme; review of 219 cases with regard to natural history, pathology, diagnostic methods, and treatment. J Neurosurg. 1958; 15(5):489-503. [DOI:10.3171/jns.1958.15.5.0489] [PMID].

  • 6.

    Lisi L, Chiavari M, Pia Ciotti GM, Lacal PM, Navarra P, Graziani G. DNA inhibitors for the treatment of brain tumors. Expert Opin Drug Metab Toxicol. 2020; 16(3):195-207. [DOI:10.1080 /17425255.2020.1729352] [PMID].

  • 7.

    Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007; 3(1):7-17. [DOI:10.1007/s12015-007-0004-8] [PMID].

  • 8.

    Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321(5897):1801-6. [DOI:10.1126/science.1164368] [PMID] [PMCID].

  • 9.

    Ebrahimi A, Keske E, Mehdipor A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed Pharmacother. 2019; 112:108663. [DOI:10.1016/j.biopha.2019.108663] [PMID].

  • 10.

    Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014; 142(2):164-75. [DOI:10.1016/j.pharmthera.2013.12.004] [PMID].

  • 11.

    Hirao A, Hoshii T. Mechanistic/mammalian target protein of rapamycin signaling in hematopoietic stem cells and leukemia. Cancer Sci. 2013; 104(8):977-82. [DOI:10.1111/cas.12189] [PMID] [PMCID].

  • 12.

    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007; 12(1):9-22. [DOI:10.1016/j.ccr.2007.05.008] [PMID].

  • 13.

    Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neurooncol. 2012; 108(1):11-27. [DOI:10.1007/s11060-011-0793-0] [PMID] [PMCID].

  • 14.

    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114(2):97109. [DOI:10.1007/s00401-007-0243-4] [PMID] [PMCID].

  • 15.

    Tatter SB. Recurrent malignant glioma in adults. Curr Treat Options Oncol. 2002; 3(6):509-24. [DOI:10.1007/s11864-0020070-8] [PMID].

  • 16.

    Galanis E, Buckner JC, Novotny P, Morton RF, McGinnis WL, Dinapoli R, et al. Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas. J Neurosurg. 2000; 93(2):201-7. [DOI:10.3171/jns.2000.93.2.0201] [PMID].

  • 17.

    Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014; 11(12):714-22. [DOI:10.1038/nrclinonc.2014.181] [PMID].

  • 18.

    Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013; 49(4):255-65. [DOI:10.1016/j. pediatrneurol.2013.08.002] [PMID] [PMCID].

  • 19.

    Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR. Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: Two main targets for drug design: A review. Curr Pharm Des. 2020; 26(15):1729-41. [DOI: 10.2174/1381612826666200131100630] [PMID].

  • 20.

    Luo G, Jiang Sh, Zhang X, Ling Y, Luo H, Zhang Y. Gambogic acid affects ribosomal occurrence in glioma cells by downregulating the phosphoinositide kinase-3/protein kinase b/mammalian target of rapamycin signaling pathway. J Nanosci Nanotechnol. 2020; 20(6):3361-72. [DOI:10.1166/jnn.2020.17425] [PMID].

  • 21.

    Okumura Y, Kohashi K, Tanaka Y, Kato M, Maehara Y, Ogawa Y, et al. Activation of the Akt/mammalian target of rapamycin pathway in combined hepatocellular carcinoma and cholangiocarcinoma: Significant correlation between p-4E-BP1 expression in cholangiocarcinoma component and prognosis. Virchows Arch. 2020; 476(6):881-90. [DOI:10.1007/s00428019-02741-3] [PMID].

  • 22.

    Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: A review of current evidences and future perspectives. Cancer Treat Rev. 2019; 72:45-55. [DOI:10.1016/j. ctrv.2018.11.001] [PMID].

  • 23.

    Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3KAKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR. Am J Med Genet C Semin Med Genet. 2019; 181(4):582-90. [DOI:10.1002/ajmg.c.31736] [PMID].

  • 24.

    Page G, Khidir FA, Pain S, Barrier L, Fauconneau B, Guillard O, et al. Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int. 2006; 49(4):413-21. [DOI:10.1016/j.neuint.2006.01.020] [PMID].

  • 25.

    Alemi Serej F, Pourhassan-Moghaddam M, Ebrahimi Kalan M, Mehdipour A, Aliyari Serej Z, Ebrahimi-Kalan A. Targeting the PI3K/Akt/mTOR signaling pathway: Applications of nanotechnology. Crescent J Med Biol Sci. 2018; 5(1):7-13. http://www. cjmb.org/text.php?id=190.

  • 26.

    Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci. 2004; 24(44):9760-9. [DOI:10.1523/JNEUROSCI.1427-04.2004] [PMID] [PMCID].

  • 27.

    Kim BW, Choi M, Kim YS, Park H, Lee HR, Yun CO, et al. Vascular Endothelial Growth Factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cell Signal. 2008; 20(4):714-25. [DOI:10.1016/j.cellsig.2007.12.009] [PMID].

  • 28.

    Polakiewicz RD, Schieferl SM, Gingras AC, Sonenberg N, Comb MJ. mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem. 1998; 273(36):23534-41. [DOI:10.1074/jbc.273.36.23534] [PMID].

  • 29.

    Hou L, Klann E. Activation of the phosphoinositide 3-kinaseAkt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci. 2004; 24(28):6352-61. [DOI:10.1523/JNEUROSCI.0995-04.2004] [PMID] [PMCID].

  • 30.

    Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci. 2009; 12(9):1152-8. [DOI:10.1038/nn.2369] [PMID].

  • 31.

    Carroll M, Warren O, Fan X, Sossin WS. 5-HT stimulates eEF2 dephosphorylation in a rapamycin-sensitive manner in Aplysia neurites. J Neurochem. 2004; 90(6):1464-76. [DOI:10.1111/ j.1471-4159.2004.02634.x] [PMID].

  • 32.

    Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, et al. rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 1994; 269(23):16333-9. [DOI:10.1016/S00219258(17)34012-7] [PMID].

  • 33.

    Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014; 7:28. [DOI:10.3389/fnmol.2014.00028] [PMID] [PMCID].

  • 34.

    Ishizuka Y, Kakiya N, Nawa H, Takei N. Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system L amino acid transporter. J Neurochem. 2008; 106(2):934-42. [DOI:10.1111/j.1471-4159.2008.05438.x] [PMID].

  • 35.

    Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, et al. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci. 2007; 27(3):449-58. [DOI:10.1523/ JNEUROSCI.4489-06.2007] [PMID] [PMCID].

  • 36.

    Ishizuka Y, Kakiya N, Witters LA, Oshiro N, Shirao T, Nawa H, et al. AMP-activated protein kinase counteracts brain-derived neurotrophic factor-induced mammalian target of rapamycin complex 1 signaling in neurons. J Neurochem. 2013; 127(1):6677. [DOI:10.1111/jnc.12362] [PMID].

  • 37.

    Ransone LJ, Verma IM. Nuclear proto-oncogenes Fos and Jun. Annu Rev Cell Biol. 1990; 6:539-57. [DOI:10.1146/annurev.cb.06.110190.002543] [PMID].

  • 38.

    Sparks CA, Guertin DA. Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene. 2010; 29(26):3733-44. [DOI:10.1038/onc.2010.139] [PMID] [PMCID].

  • 39.

    Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, et al. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PloS One. 2013; 8(11):e80070. [DOI:10.1371/journal.pone.0080070] [PMID] [PMCID].

  • 40.

    Jacinto E, Loewith R, Schmidt A, Lin Sh, Regg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004; 6(11):1122-8. [DOI:10.1038/ncb1183] [PMID].

  • 41.

    Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008; 27(41):5486-96. [DOI:10.1038/ onc.2008.244] [PMID] [PMCID].

  • 42.

    Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 2003; 4(4):257-62. [DOI:10.1016/S1535-6108(03)00248-4] [PMID].

  • 43.

    Carbonara C, Longa L, Grosso E, Borrone C, Garr MG, Brisigotti M, et al. 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-like activity also for the TSC1 gene. Hum Mol Genet. 1994; 3(10):1829-32. [DOI:10.1093/hmg/3.10.1829] [PMID].

  • 44.

    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006; 7(8):606-19. [DOI:10.1038/nrg1879] [PMID].

  • 45.

    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296(5573):1655-7. [DOI:10.1126/science.296.5573.1655] [PMID].

  • 46.

    Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007; 130(3):440-55. [DOI:10.1016/j.cell.2007.05.058] [PMID].

  • 47.

    Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J. 2002; 16(8):771-80. [DOI:10.1096/fj.01-0658com] [PMID].

  • 48.

    Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Res. 2000; 60(6):1541-5. [PMID].

  • 49.

    Semenza GL. HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010; 20(1):51-6. [DOI:10.1016/j.gde.2009.10.009] [PMID] [PMCID].

  • 50.

    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004; 10(6):594601. [DOI:10.1038/nm1052] [PMID].

  • 51.

    Crespo S, Kind M, Arcaro A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J Cancer Metastasis Treat. 2016; 2:80-9. [DOI:10.20517/2394-4722.2015.72].

  • 52.

    Wang H, Wang H, Zhang W, Huang HJ, Liao WSL, Fuller GN. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest. 2004; 84(8):941-51. [DOI:10.1038/labinvest.3700123] [PMID].

  • 53.

    Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010; 12(9):675-84. [DOI:10.1593/neo.10688] [PMID] [PMCID].

  • 54.

    Quayle SN, Lee JY, Cheung LWT, Ding L, Wiedemeyer R, Dewan RW, et al. Somatic mutations of PIK3R1 promote gliomagenesis. PloS One. 2012; 7(11):e49466. [DOI:10.1371/journal.pone.0049466] [PMID] [PMCID].

  • 55.

    Merrill MJ, Edwards NA. Insulin-like growth factor-I receptors in human glial tumors. J Clin Endocrinol Metab. 1990; 71(1):199-209. [DOI:10.1210/jcem-71-1-199] [PMID].

  • 56.

    Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005; 3(10):541-51. [DOI:10.1158/1541-7786. MCR-05-0056] [PMID].

  • 57.

    Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009; 16(1):9-20. [DOI:10.1016/j.ccr.2009.04.009] [PMID] [PMCID].

  • 58.

    Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008; 1(1-4):27-36. [DOI:10.1007/s12154-0080003-5] [PMID] [PMCID].

  • 59.

    Sabatini DM. mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer. 2006; 6(9):729-34. [DOI:10.1038/ nrc1974] [PMID].

  • 60.

    Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med. 2005; 11(8):353-61. [DOI:10.1016/j. molmed.2005.06.007] [PMID].

  • 61.

    Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011; 10(11):868-80. [DOI:10.1038/nrd3531] [PMID].

  • 62.

    Liu Q, Fang Q, Ji Sh, Han Z, Cheng W, Zhang H. Resveratrolmediated apoptosis in renal cell carcinoma via the p53/AMPactivated protein kinase/mammalian target of rapamycin autophagy signaling pathway. Mol Med Rep. 2018; 17(1):502-8. [DOI:10.3892/mmr.2017.7868].

  • 63.

    Aboudehen K. Regulation of mTOR signaling by long noncoding RNA. Biochim Biophys Acta Gene Regul Mech. 2020; 1863(4):194449. [DOI:10.1016/j.bbagrm.2019.194449] [PMID].

  • 64.

    Ebrahimikia Y, Darabi Sh, Rajaei F. Roles of stem cells in the treatment of Parkinsons disease. J Inflamm Dis. 2018; 22(4):83-99. [In Persian] [DOI:10.29252/qums.22.4.83].

  • 65.

    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stemlike cells expressing astroglial and neuronal markers in vitro. Glia. 2002; 39(3):193-206. [DOI:10.1002/glia.10094] [PMID].

  • 66.

    Sunayama J, Sato A, Matsuda KI, Tachibana K, Suzuki K, Narita Y, et al. Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro Oncol. 2010; 12(12):1205-19. [DOI:10.1093/neuonc/noq103] [PMID] [PMCID].

  • 67.

    Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 2007; 67(24):11712-20. [DOI:10.1158/0008-5472.CAN-07-2223] [PMID].

  • 68.

    Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PloS One. 2017; 12(4):e0176599. [DOI:10.1371/journal. pone.0176599] [PMID] [PMCID].

  • 69.

    Wang J, Ren D, Sun Y, Xu C, Wang C, Cheng R, et al. Inhibition of PLK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med. 2020; 24(7):3931-47. [DOI:10.1111/ jcmm.14996] [PMID] [PMCID].

  • 70.

    Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002; 62(20):5645-50. [PMID].

  • 71.

    Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003; 13(15):1259-68. [DOI:10.1016/S0960-9822(03)00506-2] [PMID].

  • 72.

    McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011; 364(17):1595-606. [DOI:10.1056/NEJMoa1100391] [PMID] [PMCID]##.