Abstract
Context:
Several studies reported that the prevalence and antibiotic-resistant of Campylobacter coli (C. coli) and Campylobacter jejuni (C. jejuni) are on the rise in Iran. To explain the prevalence and antibiotic-resistant of Campylobacter coli and Campylobacter jejuni, we reviewed related studies published from 2004 to 2017 in Iran.Methods:
We systematically searched biomedical databases (PubMed, Scopus, Google Scholar, and Web of sciences) to identify relevant studies from 2004 to 2017, either in English or in Persian. Out of 65 identified articles, 47 were published during 2004 - 2017.Results:
We found an increase in the prevalence of C. coli and C. jejuni in the animals (34.71%, 68.73%), food products (42.18%, 72%), and different clinical human samples (7.77%, 25.84%), respectively. This comprehensive review showed that C. jejuni is the foremost species in Iran. Accordingly, antimicrobial resistance studies performed during 2004 - 2017 reported a high rate of resistance to several antibiotics like ciprofloxacin, nalidixic acid, and tetracycline, with the exception of gentamicin, neomycin, and chloramphenicol that had a low resistance rate.Conclusions:
According to the results, novel prevention and treatment strategies against C. coli and C. jejuni infections are recommended, and these data may help in revising treatment guidelines in aviculture, stockyard and decreasing the antimicrobial resistance in human society.Keywords
1. Context
Campylobacter species are microaerophilic and gram-negative rods, non-fermenting, Oxidase-positive, and motile and spiral-shaped with a single polar flagellum. They can grow quite slowly (72 h - 96h) at 37°C or 42°C in primary isolation (1-3). However, Campylobacter is a common bacterium in animals, which is the main cause of Campylobacteriosis in humans. It is well documented that meat consumption may be the main source of infection in the most sporadic cases of Campylobacter enteritis. Consequently, Campylobacter coli (C. coli) and Campylobacter jejuni (C. jejuni) are the most common specimens isolated from human clinical specimens (3-6). Globally, 20% - 35% of human diarrheas can be attributed to C. jejuni (7). Illnesses caused by Campylobacter are usually self-limiting, hence, no treatment is required in most cases, except for immunocompromised patients that antibiotic therapy may be necessary. This therapeutic option can be a major reason for antimicrobial resistance in Campylobacter (8). Nowadays, several methods are available to identify Campylobacter spp. such as biochemical, molecular, and serological reaction methods (9-12). Indiscriminate application of antimicrobials in animal products and occurrence of antimicrobial-resistant foodborne Campylobacter is a serious issue in both veterinary and human medicines, which is mentioned as a public health problem by several studies (13-15).
The current review study intended to investigate the prevalence and antibiotic resistance of C. coli and C. jejuni in animal, food products, and human clinical specimens during 2004 - 2017 in Iran.
2. Evidence Acquisition
2.1. Search Strategy
We systematically searched biomedical databases (PubMed, Scopus, Google Scholar, and Web of sciences) to identify relevant studies from 2004 to 2017, either in English or in Persian. The search was performed using various combinations of the following keywords: “Campylobacter spp. AND Iran”, “Campylobacter spp. AND human clinical samples AND Iran”, “antimicrobial resistance AND Campylobacter spp. AND Iran”, “C. jejuni OR C. coli AND animals AND Iran”, “C. jejuni OR C. coli AND food products AND Iran”. In addition, to increase the comprehensiveness of the search, additional studies were sought from the reference lists of included studies. To explain the spread and development of antibiotic resistance, we reviewed the literature published based on prevalence and antibiotic-resistant of Campylobacter coli and Campylobacter jejuni. Out of 65 identified articles, 47 were published from 2004 to 2017. The quality assessment was performed according to the Joanna Briggs Institute (JBI) checklist. It worth noting that we tried to find studies performed in various regions of the country to increase the comprehensiveness of the findings.
Flowchart of study
2.2. The Inclusion Criteria
1) Data on prevalence studies were selected and categorized based on their sample, the frequency of animal and food products separated by the region, sample size, and sample collection according to the publication year (from 2004 to 2017).
2) Clinical specimens, including blood, stool, and acute diarrhea, were collected from hospitalized patients in five studies on animal sources and food products, which typically were collected from a slaughterhouse, stockyard, and stores.
3) Research studies that were employed different methods such as bacteriological culture, biochemical tests, PCR Methods (RT-PCR, Multiplex PCR, Nested PCR, and PCR-RFLP), PFGE genotyping, and blood culture were included.
4) Studies on antimicrobial susceptibility tests (AST). In all of the studies, AST was performed by the disk diffusion (Kirby-Bauer) method using the Mueller Hinton agar. These data are provided in Tables 1-3.
Prevalence Studies of Campylobacter Infections Based on Clinical Human Specimens
Authors, Publication Year | Performed Year | Region | Human Sample | Sample Size, No | Positive sample, No. (%) | Age Group | C. coli, % | C. jejuni, % | Detection Method | References |
---|---|---|---|---|---|---|---|---|---|---|
Feizabadi et al., 2007 | 2004 - 2005 | Tehran | Diarrheic | 500 | 40 (8) | ≤ 1 - 12 | 14.2 | 85.8 | Biochemical, PCR | (16) |
Hassanzadeha et al., 2007 | 2007 | Shiraz | Acute diarrhea | 114 | 40 (35) | 2–58 | - | 9.6 | Culture, biochemical | (17) |
Ghorbanalizadgan et al., 2014 | 2012 - 2013 | Tehran | Stool specimens | 200 | 12 (6) | ≤ 5 | 1.5 | 4.5 | Biochemical, PCR | (18) |
Mobaien et al., 2016 | 2013 - 2014 | Zanjan | Stool specimens | 864 | 40 (4.6) | adult | - | 4.6 | RT-PCR | (19) |
Ranjbar et al., 2017 | 2016 | East Azerbaijan | Stool samples | 1020 | 79 (7.7) | 18 - 70 | 7.6 | 24.7 | Culture, PCR | (20) |
Prevalence Studies of Campylobacter spp. Based on Animal Sources and Food Products
Authors, Publication Year | Performed Year | Region | Animal and Food Sample | Type of Sample | Sample Size, No | Positive Sample, No. (%) | From Positive Sample | Method | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
C. coli% | C. jejuni% | |||||||||
Bakhshi et al., 2016 | 2004 - 2005 | Tehran | Food product | Food product, Patients with Diarrhea | 45 | 30 (66) | 66.6 | 33.3 | PCR, biochemical tests | (21) |
Dallal et al., 2011 | 2006 - 2007 | Tehran | Animal product | Chicken, beef | 379 | 109 (28) | 24 | 76 | Culture, biochemical tests | (22) |
Rahimi et al., 2010 | 2007 | Isfahan | Animal product | Commercial poultry | 348 | 216 (62) | 19 | 81 | PCR method | (23) |
Rahimi et al., 2008 | 2006 - 2008 | Isfahan | Animal product | Poultry meat, quail, ostrich | 800 | 377 (47) | 23.6 | 76.4 | Culture | (24) |
Kazemeini et al., 2011 | 2008 - 2009 | Isfahan | Food product | Bovine milk | 120 | 3 (2.5) | No detect | 100 | Culture, biochemical tests | (25) |
Ansari-Lari et al., 2011 | 2009 | Shiraz | Animal product | Broiler flocks | 100 | 76 (76) | 56.5 | 43.5 | Multiplex PCR | (26) |
Abdi-Hachesoo et al., 2014 | 2009 | Shiraz | Animal product | Broiler flocks | 100 | 83 (83) | 48.2 | 51.8 | Multiplex PCR | (27) |
Jamali et al., 2015 | 2008 - 2010 | Tehran | Animal product | Duck, goose intestinal content | 471 | 161 (34) | 14.3 | 85.7 | Culture | (28) |
Rahimi et al., 2013 | 2009 - 2010 | Chaharmahalva Bakhtiari, Khuzestan | Animal product | Raw meat, Camel, Buffalo | 379 | 31 (8) | 22.6 | 77.4 | Culture, Nested PCR | (29) |
Rahimi et al., 2011 | 2009 - 2010 | Shahrekord | Animal product | Chicken, turkey, quail, ostrich | 494 | 187 (37) | 8 | 92 | Cultural, PCR | (30) |
Shahrokhabad et al., 2011 | 2010 | Rafsanjan | Animal product | Broilers slaughter | 100 | 31 (31) | 38.71 | 61.29 | Culture | (31) |
Mirzaie et al., 2011 | 2010 | Tehran | Animal product | Turkeys, quails | 125 | 52 (41) | 80.5 | 19.5 | Culture, biochemical tests | (32) |
Rahimi et al., 2011 | 2011 | Shahrekord | Animal product | Raw duck, goose meat | 169 | 169 (100) | 88.5 | 11.5 | Cultural& PCR | (33) |
Rahimi et al., 2013 | 2011 | Sharekord | Animal product | Chicken, quail, sheep turkey, goat, Ostrich | 214 | 213 (99.5) | 9.3 | 90.7 | Culture, biochemical, PCR | (34) |
Hosseinzadeh et al., 2015 | 2011 | Uremia | Animal product | Chicken wings | 96 | 40 (41.6) | No detect | No detect | Cultural, PCR | (35) |
Dabiri et al., 2014 | 2011 - 2012 | Tehran | Animal product | Chicken, beef meat | 450 | 121 (26.8) | 23.2 | 76.8 | Culture | (36) |
Zendehbad et al., 2013 | 2012 | Khorasan | Animal product | poultry meat, partridge, turkey | 300 | 149 (49.6) | 19.2 | 80.8 | Cultural, PCR assay | (37) |
Raissy et al., 2014 | 2012 | Azerbaijan | Animal product | Crayfish | 97 | 2 (2) | No detect | No detect | Cultural, PCR | (38) |
Khoshbakht et al., 2015 | 2012 | Shiraz | Animal product | Broiler feces | 90 | 90 (100) | 53.4 | 46.6 | Multiplex PCR, PCR RFLP | (39) |
Zendehbad et al., 2015 | 2013 | Mashhad | Animal product | Broiler meat | 360 | 227 (63) | 11.9 | 88.1 | Cultural, PCR | (40) |
Khoshbakht et al., 2016 | 2011-2013 | Shiraz | Animal product | Fecal samples of slaughtered cattle, sheep | 302 | 270 (89) | No detect | No detect | Culture, multiplex PCR | (41) |
Ehsannejad et al., 2015 | 2014 | Tehran | Animal product | Pet birds | 660 | 20 (3) | 20 | 80 | Cultural, multiplex-PCR | (42) |
Haghi et al., 2015 | 2014 | Zanjan | Food product | Bovine and ovine raw milk | 60 | 0 (0) | No detect | No detect | PCR | (43) |
Jonaidi-Jafari et al., 2016 | 2014-2015 | Isfahan | Food product | Avian eggs | 440 | 34 (7.7) | 17.7 | 82.3 | Culture, PCR | (44) |
Rahimi et al., 2017 | 2017 | Isfahan | Animal product | livestock feces from sheep, goat, cattle | 400 | 28 (7) | 21.5 | 78.5 | Culture, PCR | (45) |
Characteristic of Antimicrobial Resistance Pattern of C. coli and C. jejuni in Studies Performed in Iran
Antimicrobial Agent | Studies Year (2004 - 2017), Number of Study | Min-Max resistant reported articles for C. coli, % | Min-Max Resistant Reported Articles for C. jejuni, % | References |
---|---|---|---|---|
Gentamicin | (2004 - 2013, 2017), (14) | 0 - 8.3 | 0 - 10 | (16, 18, 22, 28, 29, 31-34, 36, 37, 41, 44, 45) |
Neomycin | (2004 - 2013, 2015), (8) | 0 - 9 | 0 - 8.5 | (16, 22, 28, 32, 36, 37, 41, 44) |
Chloramphenicol | (2004 - 2013, 2017), (15) | 0 - 8.4 | 1.4 - 8.3 | (16, 22, 28, 29, 31-34, 36, 37, 40, 41, 45, 46) |
Erythromycin | (2004 - 2013, 2017), (14) | 0 - 40 | 0.8 - 7.1 | (16, 22, 28, 31-34, 36, 37, 44, 46) |
Streptomycin | (2004 - 2013, 2017), (12) | 4.3 - 89.7 | 1.7 - 8.6 | (16, 22, 28, 29, 31, 33, 34, 36, 37, 44-46) |
Amoxicillin | (2006 - 2012, 2015 - 2017), (12) | 3.7-79.5 | 1.7 - 31.9 | (22, 28, 29, 31, 33, 34, 36, 37, 40, 44-46) |
Ampicillin | (2004 - 2013, 2015 - 2017), (15) | 4.3 -8 2 | 6.5 - 50 | (16, 22, 28, 29, 31-34, 36, 37, 41, 44-46) |
Colistin | (2004 - 2012, 2015), (7) | 0 - 35 | 0 - 34.2 | (16, 22, 28, 36, 37, 41, 44) |
Tetracycline | (2004 - 2013, 2017), (14) | 18.2 - 94 | 22.2 - 80 | (16, 22, 28, 29, 31-34, 36, 37, 41, 44-46) |
Nalidixic acid | (2004 - 2013, 2017), (14) | 14.3 - 100 | 13 - 75.8 | (16, 22, 28, 29, 31-34, 36, 37, 41, 44-46) |
Ciprofloxacin | (2004 - 2013, 2017), (15) | 30.3 - 100 | 29 - 87.7 | (16, 22, 28, 29, 31-34, 36, 37, 40, 41, 44-46) |
2.3. Exclusion Criteria
1) Studies that did not investigate the prevalence and antimicrobial resistance on C. coli and C. jejuni.
2) Studies about other Campylobacter spp. and case reports.
3) Duplicate documents.
2.4. Data analysis
Statistical analyses were performed using EXCEL 2019, including numerical and averaging calculations.
3. Results
3.1. Prevalence Rates for Different Samples
Data of the spread of the investigated agent were available for the period of 2004 to 2017 (13 years). In total 9933 specimens from human tissues, as well as animal and food products, were investigated (Tables 1 and 2). The prevalent rate of C. coli and C. jejuni in several regions are provided in these with with a mean of 34.71% and 68.73% in the animals, 42.18% and 72% in the food products, and 7.77% and 25.84% in the human samples, respectively. These data demonstrated an excessive rate of C. coli and C. jejuni prevalence in Iran, especially in broilers and poultry meat. During this period, most of the studies mentioned the C. jejuni as the predominant bacteria, which is detected in several animal products or human specimens in different regions of the country, especially in industrial cities such as Tehran, Isfahan, and Shiraz.
3.2. Antibiotic Resistance Patterns of Campylobacter
Antimicrobial susceptibility data for C. coli and C. jejuni isolates are shown in Table 3. These data reflect the 13-year period from 2004 to 2017 of sampling time in all identified studies. In this review, common antibiotics used for antibiotic susceptibility test with minimum and maximum resistance for C. coli and C. jejuni were selected from various studies and then listed in Table 3. In all of the studies, C. coli and C. jejuni isolates showed the lowest resistance to gentamicin, neomycin, and chloramphenicol (0% - 10%). According to the studies, C. coli showed the highest resistance to streptomycin (4.3% - 89.7%), ampicillin (4.3% - 82%), amoxicillin (3.7% - 79.5%), and erythromycin (0% - 40%) in comparison with the C. jejuni. Moreover, seven studies reported a similar resistance to the colistin (0% - 35%). The maximum resistance rate in C. coli and C. jejuni was due to ciprofloxacin (29% - 100%), nalidixic acid (13% - 100%), and tetracycline (18% - 94%). In summary, these data demonstrate a high resistance rate to these antimicrobial agents.
4. Discussion
Campylobacter is one of the most common bacterial causes of food-borne diseases. Unlike in humans, the intestinal tracts of all avian, including turkey, chicken, and quail, are suitable environments for Campylobacter colonization. Although it is often at a high level but brings little or no disease (11, 47). Since the numbers of cases of Campylobacteriosis have increased in North America, Europe, and Australia and epidemiological data from Africa, Asia, and the Middle East are still incomplete (48, 49), we performed this review to investigate the distribution of prevalence rates and antibiotic-resistant of C. coli and C. jejuni using approved, published studies in Iran for the period of 2004 to 2017. According to these results, Campylobacter spp. is one of the most important bacteria isolated in slaughterhouses with high resistance to different antimicrobial agents. Besides, the prevalence of C. coli and C. jejuni in animal sources (34.71%, 68.73%), food products (42.18%, 72%), and human clinical specimens’ (7.77%, 25.84%) showed high rating, respectively. In Iran, the overall mean prevalence of Campylobacter in human clinical specimens ranged from 7.77 to 25.84%, which is within the ranges reported in low- and middle-income countries. For instance, between 2005 and 2009, 14.9% of patients in Beijing, China, were reported to be positive for Campylobacter species (50, 51). However, the prevalence of Campylobacter in animal sources and food products was higher or lower than that reported values in Korea and the USA (52, 53). This variation may be attributed to the fact that Campylobacteriosis is hyperendemic in these countries and due to the poor sanitation, proximity of humans and domestic animals, various sampling sizes, employing various laboratory techniques, and the effect of geographical characteristics in different studies (30, 32). Similar to other countries, human infections caused by C. coli and C. jejuni, which was detected in identified studies, typically results from consuming undercooked poultry or via cross-contamination from the inadequate handling of poultry or avian products. For example, between 1992 and 2009, 143 outbreaks were reported in England and Wales, United Kingdom. Of these, 114 were due to contaminated food or water (54). Therefore, studies recommended that the incidence of Campylobacter spp. in the animal product, especially in avian, can be reduced by following public biosafety principles in poultry farms and pre-slaughterhouse carcasses processing. Besides, properly cooking is necessary for killing infectious agents. Since there are no internationally agreed criteria of antibiotic susceptibility testing and breakpoint assessment for Campylobacter spp., it is difficult to understand the available information and draw a conclusion (55). In developing countries like Iran, most of the antimicrobial agents in the human pharmacopeia are also used in the poultry industry and there is a significant concern about the increasing antibiotic resistance in Campylobacter spp. isolated from both humans and animals. For instance, the tetracycline class is the most commonly used antibiotic in domestic animals farming for treatment aims, because of its low cost and efficacy; however, it has led to a high tetracycline resistance in Campylobacter spp. isolated from different animal samples in Iran (30, 56-58). This resistance is comparable with the findings reported by studies performed in Poland and the USA, as well as the collective estimate prevalence worldwide (94.3%) (55, 59, 60). In this review, we observed a high rate of tetracycline, nalidixic acid, and ciprofloxacin resistance in Campylobacter spp., as reported by studies performed in various regions of the country from 2004 to 2017. Similar to our evaluation in 2013, the study by Wieczorek (61) found that C. coli had higher levels of resistance to ciprofloxacin, nalidixic acid, tetracycline, and streptomycin. In France, a 5-year survey of fecal samples from cattle recovered Campylobacter species showed an increase in the rates of resistance to fluoroquinolones (29.7 to 70.4%) (62). To be specific, these differences in occurrences of antimicrobial resistance reflect the widespread usage of these antimicrobial agents for the prevention of poultry diseases. It worth noting that these antibiotics may be inappropriate for empirical therapy in many cases. In the current review, all C. coli and C. jejuni isolates were susceptible to gentamicin. In addition, low levels of gentamicin resistance are potentially owing to the lower administration of this antimicrobial agent in poultry, duck, and goose rearing.
5. Conclusions
The findings of this review indicate that consuming poultry meat, broiler, duck, goose, camel, beef, buffalo, cow, and turkey is a potential public health risk regarding food-borne Campylobacteriosis and C. jejuni remains a predominant species in Iran. So antimicrobial resistance studies performed during 2004 and 2017 showed a high rate of resistance to several antibiotics such as ciprofloxacin, nalidixic acid, and tetracycline, except for gentamicin, neomycin, and chloramphenicol that had a low resistance rate. The surveillance of Campylobacter spp. and monitoring of antimicrobial agent usage in aviculture and stockyard would be useful for reducing the risk of meat contamination. Moreover, these data may assist in revising treatment guidelines as well as decreasing the antimicrobial-resistant in human societies.
References
-
1.
Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev. 2008;21(3):505-18. [PubMed ID: 18625685]. [PubMed Central ID: PMC2493085]. https://doi.org/10.1128/CMR.00055-07.
-
2.
Allos BM. Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis. 2001;32(8):1201-6. [PubMed ID: 11283810]. https://doi.org/10.1086/319760.
-
3.
Schielke A, Rosner BM, Stark K. Epidemiology of campylobacteriosis in Germany - insights from 10 years of surveillance. BMC Infect Dis. 2014;14:30. [PubMed ID: 24422983]. [PubMed Central ID: PMC3898467]. https://doi.org/10.1186/1471-2334-14-30.
-
4.
Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, et al. Campylobacter. Vet Res. 2005;36(3):351-82. [PubMed ID: 15845230]. https://doi.org/10.1051/vetres:2005012.
-
5.
Sauerwein RW, Bisseling J, Horrevorts AM. Septic abortion associated with Campylobacter fetus subspecies fetus infection: case report and review of the literature. Infection. 1993;21(5):331-3. [PubMed ID: 8300253]. https://doi.org/10.1007/BF01712458.
-
6.
Humphrey T, O'Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 2007;117(3):237-57. [PubMed ID: 17368847]. https://doi.org/10.1016/j.ijfoodmicro.2007.01.006.
-
7.
Henao OL, Jones TF, Vugia DJ, Griffin PM, Foodborne Diseases Active Surveillance Network W. Foodborne Diseases Active Surveillance Network-2 Decades of Achievements, 1996-2015. Emerg Infect Dis. 2015;21(9):1529-36. [PubMed ID: 26292181]. [PubMed Central ID: PMC4550136]. https://doi.org/10.3201/eid2109.150581.
-
8.
Engberg J, Neimann J, Nielsen EM, Aerestrup FM, Fussing V. Quinolone-resistant Campylobacter infections: risk factors and clinical consequences. Emerg Infect Dis. 2004;10(6):1056-63. [PubMed ID: 15207057]. [PubMed Central ID: PMC3323146]. https://doi.org/10.3201/eid1006.030669.
-
9.
Oza AN, Thwaites RT, Wareing DR, Bolton FJ, Frost JA. Detection of heat-stable antigens of Campylobacter jejuni and C. coli by direct agglutination and passive hemagglutination. J Clin Microbiol. 2002;40(3):996-1000. [PubMed ID: 11880429]. [PubMed Central ID: PMC120255]. https://doi.org/10.1128/jcm.40.3.996-1000.2002.
-
10.
Totten PA, Patton CM, Tenover FC, Barrett TJ, Stamm WE, Steigerwalt AG, et al. Prevalence and characterization of hippurate-negative Campylobacter jejuni in King County, Washington. J Clin Microbiol. 1987;25(9):1747-52. [PubMed ID: 3654945]. [PubMed Central ID: PMC269320]. https://doi.org/10.1128/JCM.25.9.1747-1752.1987.
-
11.
Hindiyeh M, Jense S, Hohmann S, Benett H, Edwards C, Aldeen W, et al. Rapid detection of Campylobacter jejuni in stool specimens by an enzyme immunoassay and surveillance for Campylobacter upsaliensis in the greater Salt Lake City area. J Clin Microbiol. 2000;38(8):3076-9. [PubMed ID: 10921981]. [PubMed Central ID: PMC87189]. https://doi.org/10.1128/JCM.38.8.3076-3079.2000.
-
12.
Dediste A, Vandenberg O, Vlaes L, Ebraert A, Douat N, Bahwere P, et al. Evaluation of the ProSpecT Microplate Assay for detection of Campylobacter: a routine laboratory perspective. Clin Microbiol Infect. 2003;9(11):1085-90. [PubMed ID: 14616724]. https://doi.org/10.1046/j.1469-0691.2003.00705.x.
-
13.
Sayah RS, Kaneene JB, Johnson Y, Miller R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol. 2005;71(3):1394-404. [PubMed ID: 15746342]. [PubMed Central ID: PMC1065171]. https://doi.org/10.1128/AEM.71.3.1394-1404.2005.
-
14.
Adzitey F, Rusul G, Huda N, Cogan T, Corry J. Prevalence, antibiotic resistance and RAPD typing of Campylobacter species isolated from ducks, their rearing and processing environments in Penang, Malaysia. Int J Food Microbiol. 2012;154(3):197-205. [PubMed ID: 22285201]. https://doi.org/10.1016/j.ijfoodmicro.2012.01.006.
-
15.
Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front Microbiol. 2011;2:200. [PubMed ID: 21991264]. [PubMed Central ID: PMC3180643]. https://doi.org/10.3389/fmicb.2011.00200.
-
16.
Feizabadi MM, Dolatabadi S, Zali MR. Isolation and drug-resistant patterns of Campylobacter strains cultured from diarrheic children in Tehran. Jpn J Infect Dis. 2007;60(4):217-9. [PubMed ID: 17642538].
-
17.
Hassanzadeh P, Motamedifar M. Occurrence of Campylobacter jejuni in Shiraz, Southwest Iran. Med Princ Pract. 2007;16(1):59-62. [PubMed ID: 17159366]. https://doi.org/10.1159/000096142.
-
18.
Ghorbanalizadgan M, Bakhshi B, Kazemnejad Lili A, Najar-Peerayeh S, Nikmanesh B. A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity. Iran Biomed J. 2014;18(3):158-64. [PubMed ID: 24842142]. [PubMed Central ID: PMC4048480]. https://doi.org/10.6091/ibj.1359.2014.
-
19.
Mobaien A, Moghaddam F, Talebi S, Karami A, Amirmoghaddami H, Ramazani A. Studying the prevalence of Campylobacter jejuni in adults with gastroenteritis from northwest of Iran. Asian Pac J Trop Dis. 2016;6(12):957-60. https://doi.org/10.1016/s2222-1808(16)61164-7.
-
20.
Ranjbar R, Babazadeh D, Jonaidi-Jafari N. Prevalence of Campylobacter jejuni in adult patients with inflammatory bacterial diarrhea, East Azerbaijan, Iran. Acta Med Mediterr. 2017;33:901-8.
-
21.
Bakhshi B, Naseri A, Alebouyeh M. Comparison of Antimicrobial Susceptibility of Campylobacter Strains Isolated from Food Samples and Patients with Diarrhea. Iran Biomed J. 2016;20(2):91-6. [PubMed ID: 26783018]. [PubMed Central ID: PMC4726889].
-
22.
Dallal MM, Doyle MP, Rezadehbashi M, Dabiri H, Sanaei M, Modarresi S, et al. Prevalence and antimicrobial resistance profiles of Salmonella serotypes, Campylobacter and Yersinia spp. isolated from retail chicken and beef, Tehran, Iran. Food Control. 2010;21(4):388-92. https://doi.org/10.1016/j.foodcont.2009.06.001.
-
23.
Rahimi E, Momtaz H, Bonyadian M. PCR detection of Campylobacter sp. from turkey carcasses during processing plant in Iran. Food Control. 2010;21(5):692-4. https://doi.org/10.1016/j.foodcont.2009.10.009.
-
24.
Rahimi E, Tajbakhsh E. Prevalence of Campylobacter species in poultry meat in the Esfahan city, Iran. Bulg J Vet Med. 2008;11(4):257-62.
-
25.
Kazemeini H, Valizade Y, Parsaei P, Nozarpour N, Rahimi E. Prevalence of Campylobacter Species in Raw Bovine Milk in Isfahan, Iran. Middle East J Sci Res. 2011;10(5):664-6.
-
26.
Ansari-Lari M, Hosseinzadeh S, Shekarforoush SS, Abdollahi M, Berizi E. Prevalence and risk factors associated with campylobacter infections in broiler flocks in Shiraz, southern Iran. Int J Food Microbiol. 2011;144(3):475-9. [PubMed ID: 21131089]. https://doi.org/10.1016/j.ijfoodmicro.2010.11.003.
-
27.
Abdi-Hachesoo B, Khoshbakht R, Sharifiyazdi H, Tabatabaei M, Hosseinzadeh S, Asasi K. Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated From Poultry Carcasses. Jundishapur J Microbiol. 2014;7(9). e12129. [PubMed ID: 25485062]. [PubMed Central ID: PMC4255377]. https://doi.org/10.5812/jjm.12129.
-
28.
Jamali H, Ghaderpour A, Radmehr B, Chuan Wei KS, Chai LC, Ismail S. Prevalence and antimicrobial resistance of Campylobacter species isolates in ducks and geese. Food Control. 2015;50:328-30. https://doi.org/10.1016/j.foodcont.2014.09.016.
-
29.
Rahimi E, Ameri M, Alimoradi M, Chakeri A, Bahrami AR. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from raw camel, beef, and water buffalo meat in Iran. Comp Clin Pathol. 2012;22(3):467-73. https://doi.org/10.1007/s00580-012-1434-5.
-
30.
Rahimi E, Ameri M. Antimicrobial resistance patterns of Campylobacter spp. isolated from raw chicken, turkey, quail, partridge, and ostrich meat in Iran. Food Control. 2011;22(8):1165-70. https://doi.org/10.1016/j.foodcont.2011.01.010.
-
31.
Shahrokhabad R, Rahimi E, Mommtaz H. Investigation of morbidity and antibacterial resistance of Campylobacter spp. sample isolation from broilers slaughter in Rafsanjan city using basic culture method. Vet J. 2011;91:53-8.
-
32.
Mirzaie S, Hassanzadeh M, Bashashati M, Barrin A. Campylobacter occurrence and antimicrobial resistance in samples from ceca of commercial turkeys and quails in Tehran, Iran. Int Res J Microbiol. 2011;2(9):338-42.
-
33.
Rahimi E, Alian F, Alian F. Prevalence and characteristic of Campylobacter species isolated from raw duck and goose meat in Iran. IPCBEE. 2011;9:171-5.
-
34.
Rahimi E, Shakerian A, Kazemeni R. Antibiotic resistant in campylobacter spp. isolate from chicken meat, turkey, Quail, partridge, ostrich, cow, sheep, goat, camel in sharekord. Food Technol Nutr. 2013;10:3.
-
35.
Hosseinzadeh S, Mardani K, Aliakbarlu J, Ghorbanzadehghan M. Occurrence of Campylobacter in chicken wings marketed in the northwest of Iran. Int Food Res J. 2015;22(1).
-
36.
Dabiri H, Aghamohammad S, Goudarzi H, Noori M, Ahmadi Hedayati M, Ghoreishi M. Prevalence and Antibiotic Susceptibility of Campylobacter species Isolated From Chicken and Beef Meat. Int J Enteric Pathog. 2014;2(2). https://doi.org/10.17795/ijep17087.
-
37.
Zendehbad B, Arian AA, Alipour A. Identification and antimicrobial resistance of Campylobacter species isolated from poultry meat in Khorasan province, Iran. Food Control. 2013;32(2):724-7. https://doi.org/10.1016/j.foodcont.2013.01.035.
-
38.
Raissy M, Khamesipour F, Rahimi E, Khodadoostan A. Occurrence of Vibrio spp., Aeromonas hydrophila, Escherichia coli and Campylobacter spp. in crayfish (Astacus leptodactylus) from Iran. Iran J Fisheries Sci. 2014;13(4):944-54.
-
39.
Khoshbakht R, Tabatabaei M, Hosseinzadeh S, Shirzad Aski H, Seifi S. Genetic Characterization of Campylobacter Jejuni and C. coli Isolated From Broilers Using flaA PCR-Restriction Fragment Length Polymorphism Method in Shiraz, Southern Iran. Jundishapur J Microbiol. 2015;8(5). e18573. [PubMed ID: 26060566]. [PubMed Central ID: PMC4458359]. https://doi.org/10.5812/jjm.8(5)2015.18573.
-
40.
Zendehbad B, Khayatzadeh J, Alipour A. Prevalence, seasonality and antibiotic susceptibility of Campylobacter spp. isolates of retail broiler meat in Iran. Food Control. 2015;53:41-5. https://doi.org/10.1016/j.foodcont.2015.01.008.
-
41.
Khoshbakht R, Tabatabaei M, Hoseinzadeh S, Raeisi M, Shirzad Aski H, Berizi E. Prevalence and antibiotic resistance profile of thermophilic Campylobacter spp. of slaughtered cattle and sheep in Shiraz, Iran. Vet Res Forum. 2016;7(3):241-6. [PubMed ID: 27872721]. [PubMed Central ID: PMC5094166].
-
42.
Ehsannejad F, Sheikholmolooki A, Hassanzadeh M, Shojaei Kavan R, Soltani M. Detection of cytolethal distending toxin (cdt) genes of Campylobacter Jejuni and Coli in fecal samples of pet birds in Iran. Iran J Vet Med. 2015;9(1):49-56.
-
43.
Haghi F, Zeighami H, Naderi G, Samei A, Roudashti S, Bahari S, et al. Detection of major food-borne pathogens in raw milk samples from dairy bovine and ovine herds in Iran. Small Ruminant Res. 2015;131:136-40. https://doi.org/10.1016/j.smallrumres.2015.08.005.
-
44.
Jonaidi-Jafari N, Khamesipour F, Ranjbar R, Kheiri R. Prevalence and antimicrobial resistance of Campylobacter species isolated from the avian eggs. Food Control. 2016;70:35-40. https://doi.org/10.1016/j.foodcont.2016.05.018.
-
45.
Rahimi E, Alipoor-Amroabadi M, Khamesipour F, Plaizier J. Investigation of prevalence of thermotolerantCampylobacterspp. in livestock feces. Can J Anim Sci. 2017;97:207-13. https://doi.org/10.1139/cjas-2015-0166.
-
46.
Bakhshi B, Kalantar M, Rastegar-Lari A, Fallah F. PFGE genotyping and molecular characterization of Campylobacter spp. isolated from chicken meat. Iran J Vet Res. 2016;17(3):177-83. [PubMed ID: 27822247]. [PubMed Central ID: PMC5090151].
-
47.
Willis WL, Murray C. Campylobacter jejuni seasonal recovery observations of retail market broilers. Poult Sci. 1997;76(2):314-7. [PubMed ID: 9057212]. https://doi.org/10.1093/ps/76.2.314.
-
48.
Sadkowska-Todys M, Kucharczyk B. [Campylobacteriosis in Poland in 2010]. Przegl Epidemiol. 2012;66(2):255-8. Polish. [PubMed ID: 23101213].
-
49.
Kubota K, Kasuga F, Iwasaki E, Inagaki S, Sakurai Y, Komatsu M, et al. Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006. J Food Prot. 2011;74(10):1592-8. [PubMed ID: 22004803]. https://doi.org/10.4315/0362-028X.JFP-10-387.
-
50.
Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human campylobacteriosis in developing countries. Emerg Infect Dis. 2002;8(3):237-44. [PubMed ID: 11927019]. [PubMed Central ID: PMC2732465]. https://doi.org/10.3201/eid0803.010233.
-
51.
Chen J, Sun XT, Zeng Z, Yu YY. Campylobacter enteritis in adult patients with acute diarrhea from 2005 to 2009 in Beijing, China. Chin Med J (Engl). 2011;124(10):1508-12. [PubMed ID: 21740807].
-
52.
Kendall ME, Crim S, Fullerton K, Han PV, Cronquist AB, Shiferaw B, et al. Travel-associated enteric infections diagnosed after return to the United States, Foodborne Diseases Active Surveillance Network (FoodNet), 2004-2009. Clin Infect Dis. 2012;54 Suppl 5:S480-7. [PubMed ID: 22572673]. https://doi.org/10.1093/cid/cis052.
-
53.
Kang YS, Cho YS, Yoon SK, Yu MA, Kim CM, Lee JO, et al. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from raw chicken meat and human stools in Korea. J Food Prot. 2006;69(12):2915-23. [PubMed ID: 17186659]. https://doi.org/10.4315/0362-028x-69.12.2915.
-
54.
Caprioli A, Busani L, Martel JL, Helmuth R. Monitoring of antibiotic resistance in bacteria of animal origin: epidemiological and microbiological methodologies. Int J Antimicrob Agents. 2000;14(4):295-301. [PubMed ID: 10794950]. https://doi.org/10.1016/s0924-8579(00)00140-0.
-
55.
Signorini ML, Rossler E, Diaz David DC, Olivero CR, Romero-Scharpen A, Soto LP, et al. Antimicrobial Resistance of Thermotolerant Campylobacter Species Isolated from Humans, Food-Producing Animals, and Products of Animal Origin: A Worldwide Meta-Analysis. Microb Drug Resist. 2018;24(8):1174-90. [PubMed ID: 29708832]. https://doi.org/10.1089/mdr.2017.0310.
-
56.
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232-60. second page, table of contents. [PubMed ID: 11381101]. [PubMed Central ID: PMC99026]. https://doi.org/10.1128/MMBR.65.2.232-260.2001.
-
57.
Taremi M, Mehdi Soltan Dallal M, Gachkar L, MoezArdalan S, Zolfagharian K, Reza Zali M. Prevalence and antimicrobial resistance of Campylobacter isolated from retail raw chicken and beef meat, Tehran, Iran. Int J Food Microbiol. 2006;108(3):401-3. [PubMed ID: 16481059]. https://doi.org/10.1016/j.ijfoodmicro.2005.12.010.
-
58.
Evans SJ, Sayers AR. A longitudinal study of campylobacter infection of broiler flocks in Great Britain. Prev Vet Med. 2000;46(3):209-23. [PubMed ID: 10913805]. https://doi.org/10.1016/s0167-5877(00)00143-4.
-
59.
Wieczorek K, Szewczyk R, Osek J. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter jejuni and C. coli isolated from retail raw meat in Poland. Vet Med. 2012;57(6). https://doi.org/10.17221/6016-VETMED.
-
60.
Noormohamed A, Fakhr MK. A higher prevalence rate of Campylobacter in retail beef livers compared to other beef and pork meat cuts. Int J Environ Res Public Health. 2013;10(5):2058-68. [PubMed ID: 23698698]. [PubMed Central ID: PMC3709364]. https://doi.org/10.3390/ijerph10052058.
-
61.
Wieczorek K, Kania I, Osek J. Prevalence and antimicrobial resistance of Campylobacter spp. isolated from poultry carcasses in Poland. J Food Prot. 2013;76(8):1451-5. [PubMed ID: 23905805]. https://doi.org/10.4315/0362-028X.JFP-13-035.
-
62.
Chatre P, Haenni M, Meunier D, Botrel MA, Calavas D, Madec JY. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from cattle between 2002 and 2006 in France. J Food Prot. 2010;73(5):825-31. [PubMed ID: 20501032]. https://doi.org/10.4315/0362-028x-73.5.825.