A Selected Balance Exercise Combined with Anodal tDCS Was Beneficial in Balance Performance but not in Working Memory in Healthy Older Adults

authors:

avatar Mehrshad Mehrdadian 1 , avatar Esmaeel Saemi ORCID 1 , * , avatar Georgian Badicu ORCID 2 , avatar Mohammadreza Doustan ORCID 1 , avatar Tomofumi Yamaguchi 3

Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Brasov, 500068 Brasov, Romania
Department of Physical Therapy, Juntendo Universit

how to cite: Mehrdadian M, Saemi E, Badicu G, Doustan M, Yamaguchi T. A Selected Balance Exercise Combined with Anodal tDCS Was Beneficial in Balance Performance but not in Working Memory in Healthy Older Adults. J Motor Control Learn. 2023;5(2):e144166. https://doi.org/10.61186/ijmcl.5.2.1.

Abstract

Background: Transcranial direct current stimulation (tDCS) has recently drawn attention as an inexpensive, painless, safe, and effective technique to improve motor performance and cognitive function in older adults. This study examined the effects of a selected balance exercise combined with anodal tDCS on balance performance in older adults. 
Methods: Twenty-four healthy older adults (Mean ages= 69.79±5.50 years) participated in this study. The participants were randomly assigned into a real tDCS or sham tDCS groups. The participants in the real tDCS group received 2 mA anodal tDCS over the left primary motor cortex (M1) for 20 min while in the sham group they received a sham tDCS for the same duration. The participants performed a selected balance exercise program for 50 min following tDCS. Training was conducted 2 sessions per week for 8 weeks (16 sessions). Berg balance scale (BBS), timed up and go test (TUG) and working memory test (2-back task) were measured before (baseline), after 8 weeks of the training, and 4 weeks of follow-up. 
Results: Compared to sham tDCS group, BBS and TUG were significantly improved in real tDCS group after the training and 4 weeks of follow-up, however, this intervention could not affect working memory. 
Conclusion: In summary, these results indicate that the selected balance exercise program combined with anodal tDCS can improve balance performance but not working memory in older adults.

Fulltext

Full-text is available in PDF format.

References

  • 1.

    Adams, D. L. (1999). Develop better motor skill progressions with gentile's taxonomy of tasks. Journal of Physical Education, Recreation & Dance, 70(8), 35-38.

  • 2.

    Alix-Fages, C., Romero-Arenas, S., Castro-Alonso, M., ColomerPoveda, D., Río-Rodriguez, D., Jerez-Martínez, A., ... & Márquez, G. (2019). Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production: A systematic review and meta-analysis. Journal of clinical medicine, 8(4), 536.

  • 3.

    Almeida, R., Barbosa, J., & Compte, A. (2015). Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study. Journal of neurophysiology, 114(3), 1806-1818.

  • 4.

    Ammann, C., Spampinato, D., & Márquez-Ruiz, J. (2016). Modulating motor learning through transcranial direct-current stimulation: an integrative view. Frontiers in Psychology, 7, 1981.

  • 5.

    Andrews, S. C., Hoy, K. E., Enticott, P. G., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain stimulation, 4(2), 84-89.

  • 6.

    Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363- 375.

  • 7.

    Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. NeuroReport: For Rapid Communication of Neuroscience Research, 12 (16), 3553–3555.

  • 8.

    Azhdar, M., Mirzakhani, N., Irani, A., Akbarzadeh Baghban, A. R., Daryabor, A., Sangi, S., & Afshin Jah, N. (2022). The Effect of Balance Training on Cognitive and Occupational Performance of the Elderly. Journal of Babol University of Medical Sciences, 24(1), 41-49.

  • 9.

    Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. (2013). Partially non‐linear stimulation intensity‐dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of physiology, 591(7), 1987-2000.

  • 10.

    Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience letters, 521(2), 148-151.

  • 11.

    Blum, L., & Korner-Bitensky, N. (2008). Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical therapy, 88(5), 559-566.

  • 12.

    Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M., Pascual-Leone, A., & Fregni, F. (2006). Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. Journal of the neurological sciences, 249(1), 31-38.

  • 13.

    Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., ... & Cohen, L. G. (2017). Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clinical Neurophysiology, 128(4), 589-603.

  • 14.

    Campbell, A. J., Robertson, M. C., Gardner, M. M., Norton, R. N., Tilyard, M. W., & Buchner, D. M. (1997). Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. Bmj, 315(7115), 1065-1069.

  • 15.

    Cogiamanian, F., Marceglia, S. A. R. A., Ardolino, G., Barbieri, S., & Priori, A. J. E. J. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242-249.

  • 16.

    Coppin, A. K., Shumway-Cook, A., Saczynski, J. S., Patel, K. V., Ble, A., Ferrucci, L., & Guralnik, J. M. (2006). Association of executive function and performance of dual-task physical tests among older adults: analyses from the InChianti study. Age and ageing, 35(6), 619-624.

  • 17.

    Costa, G. C., Corrêa, J. C. F., Silva, S. M., Corso, S. D., da Cruz, S. F., de Souza Cunha, M., ... & Corrêa, F. I. (2020). Effect of transcranial direct current stimulation and multicomponent training on functional capacity in older adults: protocol for a randomized, controlled, double-blind clinical trial. Trials, 21, 1-10.

  • 18.

    Craig, C. E., & Doumas, M. (2017). Anodal transcranial direct current stimulation shows minimal, measure-specific effects on dynamic postural control in young and older adults: a double blind, shamcontrolled study. PloS one, 12(1), e0170331.

  • 19.

    Demain, A., Westby, G. M., Fernandez-Vidal, S., Karachi, C., Bonneville, F., Do, M. C., ... & Welter, M. L. (2014). High-level gait and balance disorders in the elderly: a midbrain disease? Journal of neurology, 261, 196-206.

  • 20.

    Dieckhöfer, A., Waberski, T. D., Nitsche, M., Paulus, W., Buchner, H., & Gobbelé, R. (2006). Transcranial direct current stimulation applied over the somatosensory cortex–differential effect on low and high frequency SEPs. Clinical Neurophysiology, 117(10), 2221-2227.

  • 21.

    Ehsani, F., Mortezanejad, M., Yosephi, M. H., Daniali, S., & Jaberzadeh, S. (2022). The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: a randomized, double-blinded sham-controlled trial study. Neurological Sciences, 43(3), 1893-1901.

  • 22.

    Ehsani, F., Samaei, A., Zoghi, M., Hedayati, R., & Jaberzadeh, S. (2017). The effects of cerebellar transcranial direct current stimulation on static and dynamic postural stability in older individuals: a randomized double‐blind sham‐controlled study. European Journal of Neuroscience, 46(12), 2875-2884.

  • 23.

    Fertonani, A., & Miniussi, C. (2017). Transcranial electrical stimulation: what we know and do not know about mechanisms. The Neuroscientist, 23(2), 109-123.

  • 24.

    Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., ... & Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental brain research, 166, 23-30.

  • 25.

    Friehs, M. A., Güldenpenning, I., Frings, C., & Weigelt, M. (2020). Electrify your game! Anodal tDCS increases the resistance to head fakes in basketball. Journal of Cognitive Enhancement, 4, 62-70.

  • 26.

    Fujiyama, H., Hinder, M. R., Barzideh, A., Van de Vijver, C., Badache, A. C., Manrique-C, M. N., ... & Swinnen, S. P. (2017). Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiology of aging, 51, 31-42.

  • 27.

    Galea, J. M., & Celnik, P. (2009). Brain polarization enhances the formation and retention of motor memories. Journal of neurophysiology, 102(1), 294-301.

  • 28.

    Gardner, M. M., Buchner, D. M., Robertson, M. C., & Campbell, A. J. (2001). Practical implementation of an exercise‐based falls prevention programme. Age and ageing, 30(1), 77-83.

  • 29.

    Gomes, M. A., Akiba, H. T., Gomes, J. S., Trevizol, A. P., Lacerda, A. L. T. D., & Dias, Á. M. (2019). Transcranial direct current stimulation (tDCS) in elderly with mild cognitive impairment: a pilot study. Dementia & neuropsychologia, 13, 187-195.

  • 30.

    Goodwill, A. M., Daly, R. M., & Kidgell, D. J. (2015). The effects of anodal-tDCS on cross-limb transfer in older adults. Clinical Neurophysiology, 126(11), 2189-2197.

  • 31.

    Hoshyari, M., Saemi, E., & Doustan, M. (2022). Motor learning and working memory in children: The role of cognitive-motor and motor-motor dual-task training. Psihologija, 55(4), 397-413.

  • 32.

    Hou, J., Nitsche, M. A., Yi, L., Kong, Z., & Qi, F. (2022). Effects of Transcranial Direct Current Stimulation over the Primary Motor Cortex in Improving Postural Stability in Healthy Young Adults. Biology, 11(9), 1370.

  • 33.

    Hummel, T., Genow, A., & Landis, B. N. (2010). Clinical assessment of human gustatory function using event related potentials. Journal of Neurology, Neurosurgery & Psychiatry, 81(4), 459-464.

  • 34.

    Hunter, G. R., Weinsier, R. L., Bamman, M. M., & Larson, D. E. (1998). A role for high intensity exercise on energy balance and weight control. International journal of obesity, 22(6), 489-493.

  • 35.

    Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394-412.

  • 36.

    Julious, S. A. (2005). Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry, 4(4), 287-291.

  • 37.

    Kamali, A. M., Saadi, Z. K., Yahyavi, S. S., Zarifkar, A., Aligholi, H., & Nami, M. (2019). Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PloS one, 14(8), e0220363.

  • 38.

    Kaminski, E., Hoff, M., Rjosk, V., Steele, C. J., Gundlach, C., Sehm, B., ... & Ragert, P. (2017). Anodal transcranial direct current stimulation does not facilitate dynamic balance task learning in healthy old adults. Frontiers in human neuroscience, 11, 16.

  • 39.

    Kaminski, E., Hoff, M., Sehm, B., Taubert, M., Conde, V., Steele, C. J., ... & Ragert, P. (2013). Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neuroscience letters, 552, 76-80.

  • 40.

    Karok, S., & Witney, A. G. (2013). Enhanced motor learning following task-concurrent dual transcranial direct current stimulation. PloS one, 8(12), e85693.

  • 41.

    Katagiri, N., Kawakami, S., Okuyama, S., Koseki, T., Kudo, D., Namba, S., ... & Yamaguchi, T. (2021). Single-session cerebellar transcranial direct current stimulation affects postural control learning and cerebellar brain inhibition in healthy individuals. The Cerebellum, 20, 203-211.

  • 42.

    Ke, Y., Wang, N., Du, J., Kong, L., Liu, S., Xu, M., ... & Ming, D. (2019). The effects of transcranial direct current stimulation (tDCS) on working memory training in healthy young adults. Frontiers in human neuroscience, 13, 19.

  • 43.

    Lima, C. A., Ricci, N. A., Nogueira, E. C., & Perracini, M. R. (2018). The Berg Balance Scale as a clinical screening tool to predict fall risk in older adults: a systematic review. Physiotherapy, 104(4), 383-394.

  • 44.

    Lusardi, M. M., Pellecchia, G. L., & Schulman, M. (2003). Functional performance in community living older adults. Journal of Geriatric Physical Therapy, 26(3), 14-22.

  • 45.

    Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., & Weinberger, D. R. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58(4), 630-635.

  • 46.

    McCrimmon, C. M., Fu, J. L., Wang, M., Lopes, L. S., Wang, P. T., Karimi-Bidhendi, A., ... & Do, A. H. (2017). Performance assessment of a custom, portable, and low-cost brain–computer interface platform. IEEE Transactions on Biomedical Engineering, 64(10), 2313-2320.

  • 47.

    McNeil, C. J., Vandervoort, A. A., & Rice, C. L. (2007). Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. Journal of applied physiology, 102(5), 1962-1968.

  • 48.

    Mehrdadian, M., Saemi, E., Doustan, M., & Yamaguchi, T. (2022). The Effects of Anodal tDCS Combined with a Selected Balance Exercise Program on Balance Performance and Working Memory in Older Adults.

  • 49.

    Modaberi, S., Saemi, E., Federolf, P. A., & van Andel, S. (2021). A systematic review on detraining effects after balance and fall prevention interventions. Journal of clinical medicine, 10(20), 4656.

  • 50.

    Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain stimulation, 6(3), 424-432.

  • 51.

    Murphy, O. W., Hoy, K. E., Wong, D., Bailey, N. W., Fitzgerald, P. B., & Segrave, R. A. (2020). Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: Behavioural and electrophysiological evidence. Brain Stimulation, 13(5), 1370- 1380.

  • 52.

    Neuls, P. D., Clark, T. L., Van Heuklon, N. C., Proctor, J. E., Kilker, B. J., Bieber, M. E., ... & Newton, R. A. (2011). Usefulness of the Berg Balance Scale to predict falls in the elderly. Journal of geriatric physical therapy, 34(1), 3-10.

  • 53.

    Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(Pt 3), 633.

  • 54.

    Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., ... & Pascual-Leone, A. (2008). Transcranial direct current stimulation: state of the art 2008. Brain stimulation, 1(3), 206-223.

  • 55.

    Okano, A. H., Fontes, E. B., Montenegro, R. A., Farinatti, P. D. T. V., Cyrino, E. S., Li, L. M., ... & Noakes, T. D. (2015). Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. British journal of sports medicine, 49(18), 1213-1218.

  • 56.

    Oki, K., Mahato, N. K., Nakazawa, M., Amano, S., France, C. R., Russ, D. W., & Clark, B. C. (2016). Preliminary evidence that excitatory transcranial direct current stimulation extends time to task failure of a sustained, submaximal muscular contraction in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(8), 1109-1112.

  • 57.

    Parikh, P. J., & Cole, K. J. (2015). Effects of transcranial direct current stimulation on the control of finger force during dexterous manipulation in healthy older adults. PloS one, 10(4), e0124137.

  • 58.

    Poortvliet, P., Hsieh, B., Cresswell, A., Au, J., & Meinzer, M. (2018). Cerebellar transcranial direct current stimulation improves adaptive postural control. Clinical Neurophysiology, 129(1), 33-41.

  • 59.

    Pourmahmoudian, P., Noraste, A. A., Daneshmandi, H., & Atrkar Roshan, Z. (2018). Functional balance assessment scales in elderly. Iranian Journal of Ageing, 13(2), 132-153.

  • 60.

    Rabipour, S., Vidjen, P. S., Remaud, A., Davidson, P. S., & Tremblay, F. (2019). Examining the interactions between expectations and tDCS effects on motor and cognitive performance. Frontiers in Neuroscience, 12, 999.

  • 61.

    Radel, R., Tempest, G., Denis, G., Besson, P., & Zory, R. (2017). Extending the limits of force endurance: Stimulation of the motor or the frontal cortex? Cortex, 97, 96-108.

  • 62.

    Robbins, T. W., & Murphy, E. R. (2006). Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends in pharmacological sciences, 27(3), 141-148.

  • 63.

    Rogalewski, A., Breitenstein, C., Nitsche, M. A., Paulus, W., & Knecht, S. (2004). Transcranial direct current stimulation disrupts tactile perception. European Journal of Neuroscience, 20(1), 313-316.

  • 64.

    Rostami, M., Mosallanezhad, Z., Ansari, S., Ehsani, F., Kidgell, D., Nourbakhsh, M. R., ... & Jaberzadeh, S. (2020). Multi-session anodal transcranial direct current stimulation enhances lower extremity functional performance in healthy older adults. Experimental brain research, 238, 1925-1936.

  • 65.

    Scahill, L., Leckman, J. F., Schultz, R. T., Katsovich, L., & Peterson, B. S. (2003). A placebo-controlled trial of risperidone in Tourette syndrome. Neurology, 60(7), 1130-1135.

  • 66.

    Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., ... & Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721-733.

  • 67.

    Soltaninejad, Z., Nejati, V., & Ekhtiari, H. (2019). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 23(4), 325-332.

  • 68.

    Steiner, K. M., Enders, A., Thier, W., Batsikadze, G., Ludolph, N., Ilg, W., & Timmann, D. (2016). Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PloS one, 11(9), e0163598.

  • 69.

    Steiner, K. M., Enders, A., Thier, W., Batsikadze, G., Ludolph, N., Ilg, W., & Timmann, D. (2016). Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PloS one, 11(9), e0163598.

  • 70.

    Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. Frontiers in neuroscience, 11, 641.

  • 71.

    Veldema, J., Engelhardt, A., & Jansen, P. (2022). Does anodal tDCS improve basketball performance? A randomized controlled trial. European Journal of Sport Science, 22(2), 126-135.

  • 72.

    Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., ... & Nelson, P. T. (2008). The expression of microRNA miR107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28(5), 1213- 1223.

  • 73.

    Zandvliet, S. B., Meskers, C. G., Kwakkel, G., & van Wegen, E. E. (2018). Short-term effects of cerebellar tDCS on standing balance performance in patients with chronic stroke and healthy agematched elderly. The Cerebellum, 17, 575-589.

  • 74.

    Zhidong, C., Wang, X., Yin, J., Song, D., & Chen, Z. (2021). Effects of physical exercise on working memory in older adults: a systematic and meta-analytic review. European Review of Aging and Physical Activity, 18(1), 1-15.

  • 75.

    Zimerman, M., & Hummel, F. C. (2010). Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Frontiers in aging neuroscience, 2, 149.