Logo
Koomesh

Image Credit:Koomesh

Fabrication and Characterization of Fibrin/Bioactive Glass Nanoparticles Composite for Bone Tissue Engineering

Author(s):
Alireza NooriAlireza Noori1,*, Seyed Jamal AshrafiSeyed Jamal Ashrafi2, zahra mohammadizahra mohammadi3, Javad Mohammadnejad AroughJavad Mohammadnejad Arough3, Abdoreza Sheykhmehdi MesgarAbdoreza Sheykhmehdi Mesgar3,**
1Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
2Department of Nanotechnology, School of Medicine, Shahrud University of Medical Sciences, Semnan, Iran
3Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
Corresponding Authors:

Koomesh:Vol. 26, issue 2; e149784
Published online:Nov 04, 2024
Article type:Research Article
How to Cite:Alireza Noori, Seyed Jamal Ashrafi, zahra mohammadi, Javad Mohammadnejad Arough, Abdoreza Sheykhmehdi Mesgar, Fabrication and Characterization of Fibrin/Bioactive Glass Nanoparticles Composite for Bone Tissue Engineering.koomesh.2024;26(2):e149784.https://doi.org/10.69107/koomesh-149784.

Abstract

Fulltext

The full-text is available in the PDF file.

References

  • 1.
    Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137-50. [PubMed ID:35026139]. [PubMed Central ID:PMC8776563]. https://doi.org/10.1016/S2215-0366(21)00395-3.
  • 2.
    Sahlabadi AS, Bidel H, Rabie H, Moosavi_Kordmiri SH, Balochkhaneh FA. [Relationship between the prevalence of musculoskeletal disorders and postural status and ergonomic risk factors in the workplace]. Koomesh. 2021. Persian. https://doi.org/10.52547/koomesh.23.4.494.
  • 3.
    Blokhuis TJ, Arts JJ. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury. 2011;42 Suppl 2:S26-9. [PubMed ID:21714968]. https://doi.org/10.1016/j.injury.2011.06.010.
  • 4.
    Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42 Suppl 2:S16-21. [PubMed ID:21889142]. https://doi.org/10.1016/j.injury.2011.06.199.
  • 5.
    Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater. 2021;6(11):4110-40. [PubMed ID:33997497]. [PubMed Central ID:PMC8091181]. https://doi.org/10.1016/j.bioactmat.2021.03.043.
  • 6.
    Eslami M, Yazdi HM, Hariri K, Rouhollah F, Nayernia K. [Precision medicine, technologies, and molecular diagnostics]. Koomesh. 2022. Persian.
  • 7.
    Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel). 2023;10(7). [PubMed ID:37508786]. [PubMed Central ID:PMC10376773]. https://doi.org/10.3390/bioengineering10070759.
  • 8.
    Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-62. [PubMed ID:35531040]. [PubMed Central ID:PMC9070423]. https://doi.org/10.1039/c9ra05214c.
  • 9.
    Al-Harbi N, Mohammed H, Al-Hadeethi Y, Bakry AS, Umar A, Hussein MA, et al. Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. Pharmaceuticals (Basel). 2021;14(2). [PubMed ID:33498229]. [PubMed Central ID:PMC7909272]. https://doi.org/10.3390/ph14020075.
  • 10.
    Pereira MM, Jones JR, Hench LL. Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. J Advances In Applied Ceramics. 2005;104(1):35-42. https://doi.org/10.1179/174367605225011034.
  • 11.
    Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Materials Chemistry B. 2023;11(5):955-73.
  • 12.
    Shearer A, Montazerian M, Sly JJ, Hill RG, Mauro JC. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater. 2023;160:14-31. [PubMed ID:36804821]. https://doi.org/10.1016/j.actbio.2023.02.020.
  • 13.
    Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. J Composites Sci Technol. 2010;70(13):1764-76. https://doi.org/10.1016/j.compscitech.2010.06.002.
  • 14.
    Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials. 2008;29(12):1750-61. [PubMed ID:18255139]. https://doi.org/10.1016/j.biomaterials.2007.12.040.
  • 15.
    Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine. 2017;12:4937-61. [PubMed ID:28761338]. [PubMed Central ID:PMC5516781]. https://doi.org/10.2147/IJN.S124671.
  • 16.
    Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, et al. Technological advances in fibrin for tissue engineering. J Tissue Eng. 2023;14:20417314231190288. [PubMed ID:37588339]. [PubMed Central ID:PMC10426312]. https://doi.org/10.1177/20417314231190288.
  • 17.
    Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247-99. [PubMed ID:15837518]. https://doi.org/10.1016/S0065-3233(05)70008-5.
  • 18.
    Davis HE, Binder BY, Schaecher P, Yakoobinsky DD, Bhat A, Leach JK. Enhancing osteoconductivity of fibrin gels with apatite-coated polymer microspheres. Tissue Eng Part A. 2013;19(15-16):1773-82. [PubMed ID:23560390]. [PubMed Central ID:PMC3700018]. https://doi.org/10.1089/ten.TEA.2012.0288.
  • 19.
    Ito K, Yamada Y, Naiki T, Ueda M. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin Oral Implants Res. 2006;17(5):579-86. [PubMed ID:16958700]. https://doi.org/10.1111/j.1600-0501.2006.01246.x.
  • 20.
    Zhao H, Ma L, Gao C, Wang J, Shen J. Fabrication and properties of injectable β-tricalcium phosphate particles/fibrin gel composite scaffolds for bone tissue engineering. J Materials Sci Engineering: C. 2009;29(3):836-42. https://doi.org/10.1016/j.msec.2008.07.033.
  • 21.
    Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials. 2008;29(30):4091-9. [PubMed ID:18640716]. [PubMed Central ID:PMC2610368]. https://doi.org/10.1016/j.biomaterials.2008.06.030.
  • 22.
    Xia W, Chang J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. J Materials Letters. 2007;61(14-15):3251-3. https://doi.org/10.1016/j.matlet.2006.11.048.
  • 23.
    Kesse X, Vichery C, Nedelec JM. Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol To Control Its Morphology, Dispersibility, and Composition. ACS Omega. 2019;4(3):5768-75. [PubMed ID:31459729]. [PubMed Central ID:PMC6648633]. https://doi.org/10.1021/acsomega.8b03598.
  • 24.
    Lee JT, Leng Y, Chow KL, Ren F, Ge X, Wang K, et al. Cell culture medium as an alternative to conventional simulated body fluid. Acta Biomater. 2011;7(6):2615-22. [PubMed ID:21356333]. https://doi.org/10.1016/j.actbio.2011.02.034.
  • 25.
    Thorn JJ, Sorensen H, Weis-Fogh U, Andersen M. Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery. Int J Oral Maxillofac Surg. 2004;33(1):95-100. [PubMed ID:14690664]. https://doi.org/10.1054/ijom.2003.0461.
  • 26.
    Franco D, Franco T, Schettino AM, Filho JM, Vendramin FS. Protocol for obtaining platelet-rich plasma (PRP), platelet-poor plasma (PPP), and thrombin for autologous use. Aesthetic Plast Surg. 2012;36(5):1254-9. [PubMed ID:22936376]. https://doi.org/10.1007/s00266-012-9957-3.
  • 27.
    Zhao H, Ma L, Zhou J, Mao Z, Gao C, Shen J. Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mater. 2008;3(1):015001. [PubMed ID:18458488]. https://doi.org/10.1088/1748-6041/3/1/015001.
  • 28.
    Mačković M, Hoppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, et al. Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J Nanoparticle Res. 2012;14:1-22. https://doi.org/10.1007/s11051-012-0966-6.
  • 29.
    Goh YF, Alshemary AZ, Akram M, Abdul Kadir MR, Hussain R. Bioactive glass: an in‐vitro comparative study of doping with nanoscale copper and silver particles. J Inter Applied Glass Sci. 2014;5(3):255-66. https://doi.org/10.1111/ijag.12061.
  • 30.
    Kokubo T, Ito S, Shigematsu M, Sanka S, Yamamuro T. Fatigue and life-time of bioactive glass-ceramic AW containing apatite and wollastonite. J Materials Sci. 1987;22:4067-70. https://doi.org/10.1007/BF01133359.
  • 31.
    Tawil B. Fibrin and its applications. J An Introduction Biomate. 2006:105-20.
  • 32.
    Park JJ, Cintron JR, Siedentop KH, Orsay CP, Pearl RK, Nelson RL, et al. Technical manual for manufacturing autologous fibrin tissue adhesive. Dis Colon Rectum. 1999;42(10):1334-8. [PubMed ID:10528774]. https://doi.org/10.1007/BF02234225.
  • 33.
    Ostomel TA, Shi Q, Tsung CK, Liang H, Stucky GD. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small. 2006;2(11):1261-5. [PubMed ID:17192971]. https://doi.org/10.1002/smll.200600177.
  • 34.
    El-Fiqi A, Lee JH, Lee EJ, Kim HW. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013;9(12):9508-21. [PubMed ID:23928332]. https://doi.org/10.1016/j.actbio.2013.07.036.
  • 35.
    Wu C, Chang J, Fan W. Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J Materials Chem. 2012;22(33):16801-9. https://doi.org/10.1039/c2jm33387b.
  • 36.
    Misra SK, Ansari T, Mohn D, Valappil SP, Brunner TJ, Stark WJ, et al. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. J R Soc Interface. 2010;7(44):453-65. [PubMed ID:19640877]. [PubMed Central ID:PMC2842795]. https://doi.org/10.1098/rsif.2009.0255.
  • 37.
    Zhu H, Liu N, Feng X, Chen J. Fabrication and characterization of silk fibroin/bioactive glass composite films. J Materials Sci Engineering: C. 2012;32(4):822-9. https://doi.org/10.1016/j.msec.2012.01.033.
comments

Leave a comment here


Crossmark
Crossmark
Checking
Share on
Cited by
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles