Changes in the composition and function of the gut microbiota in celiac disease

authors:

avatar Fahimeh Sadat Gholam Mostafaei , avatar Abdolhamid Hajihasani , * , avatar Rahimeh Eskandarian ORCID , avatar Abbas Yadegar , avatar Hamid Asadzadeh Aghdaei , avatar Mohammad Reza Zali


how to cite: Gholam Mostafaei F S, Hajihasani A, Eskandarian R, Yadegar A, Asadzadeh Aghdaei H, et al. Changes in the composition and function of the gut microbiota in celiac disease. koomesh. 2021;23(3):e149948. 

Abstract

Evidence is supported the hypothesis that any changes in the composition and function of the gut microbiota play a fundamental role in a number of chronic inflammatory diseases including celiac disease (CD). In the last decade, several culture-independent methods have been developed to identify the components of the human microbiome. The study of microbiota based on nucleic acid analysis found in feces or other biological samples allows the characterization of non-cultivable microbes. Current evidence on the composition and role of the intestinal microbiota as triggers for CD is highly variable and sometimes contradictory. However, emerging evidence suggested that gut microbiota may be associated with development of several gastrointestinal diseases such as CD. The microbiota plays a key role in function and modulation of both innate and adaptive immunity. Recent studies have shown noticeable reduction in beneficial bacteria and increase in those potentially harmful microbes in patients with CD as compared to healthy controls. Thus, in this review we tried to discuss the relationship between the intestinal microbiome and CD.

References

  • 1.

    [1] Dicke WK, Weijers HA, van de Kamer JH. Coeliac disease. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr Stockh 1953; 42: 34-42.

  • 2.

    https://doi.org/10.1111/j.1651-2227.1953.tb05563.x.

  • 3.

    PMid:13050382.

  • 4.

    [2] Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten HLA status and the risk of celiac disease in children. N Engl J Med 2014; 371: 1295-1303.

  • 5.

    https://doi.org/10.1056/NEJMoa1400697.

  • 6.

    PMid:25271602.

  • 7.

    [3] Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2018; 16: 823-836.

  • 8.

    https://doi.org/10.1016/j.cgh.2017.06.037.

  • 9.

    PMid:29551598.

  • 10.

    [4] Ashtari S, Pourhoseingholi MA, Rostami K, Asadzadeh-Aghdaei H, Rostami-Nejad M, et al. Prevalence of gluten-related disorders in asia pacific region: a systematic review. J Gastrointestin Liver Dis 2019; 28: 95-105.

  • 11.

    https://doi.org/10.15403/jgld.2014.1121.281.sys.

  • 12.

    PMid:30851178.

  • 13.

    [5] Rostami Nejad M, Mahbobipour H, Fazeli Z, Mashayekhi R, Mirsattari D, Nazemalhosseini Mojarad E, et al. Celiac disease in dyspeptic patients. Koomesh 2011; 12: 209-214. (Persian).

  • 14.

    [6] Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med 2010; 42: 530-538.

  • 15.

    https://doi.org/10.3109/07853890.2010.514285.

  • 16.

    PMid:20868314.

  • 17.

    [7] Trovato CM, Montuori M, Anania C, Barbato M, Vestri AR, Guida S, et al. Are ESPGHAN "biopsy-sparing" guidelines for celiac disease also suitable for asymptomatic patients? Am J Gastroenterol 2015; 110: 1485-1489.

  • 18.

    https://doi.org/10.1038/ajg.2015.285.

  • 19.

    PMid:26372508.

  • 20.

    [8] Tiberti C, Montuori M, Panimolle F, Trovato CM, Anania C, Valitutti F, et al. Screening for Type 1 diabetes- thyroid- gastric- and adrenal-specific humoral autoimmunity in 529 children and adolescents with celiac disease at diagnosis identifies as positive one in every nine patients. Diabetes Care 2017; 40: e10-e11.

  • 21.

    https://doi.org/10.2337/dc16-2095.

  • 22.

    PMid:27899493.

  • 23.

    [9] Catassi C, Gatti S, Lionetti E. World perspective and celiac disease epidemiology. Dig Dis 2015; 33: 141-146.

  • 24.

    https://doi.org/10.1159/000369518.

  • 25.

    PMid:25925915.

  • 26.

    [10] Ivarsson A, Mylus A, Norstrm F, Van der Pals M, Rosn A, Hgberg L, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 2013; 131: e687-e694.

  • 27.

    https://doi.org/10.1542/peds.2012-1015.

  • 28.

    PMid:23420914.

  • 29.

    [11] Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 2014; 371: 1304-1315.

  • 30.

    https://doi.org/10.1056/NEJMoa1404172.

  • 31.

    PMid:25271603.

  • 32.

    [12] Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease Gut 2002; 50: 624-628.

  • 33.

    https://doi.org/10.1136/gut.50.5.624.

  • 34.

    PMid:11950806 PMCid:PMC1773191.

  • 35.

    [13] Mashayekhi K, Rostami Nejad M, Amani D, Rostami K, Rezaei-Tavirani M, Zali MR. A rapid and sensitive assay to identify HLADQ2/8 risk alleles for celiac disease using real-time PCR method. Gastroenterol Hepatol Bed Bench 2018; 11: 250-258.

  • 36.

    [14] Maruvada P, Leone V, Kaplan LM, Chang EB. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017; 22: 589-599.

  • 37.

    https://doi.org/10.1016/j.chom.2017.10.005.

  • 38.

    PMid:29120742.

  • 39.

    [15] Knip M, Honkanen J. Modulation of Type 1 diabetes risk by the intestinal microbiome. Curr Diab Rep 2017; 17: 105.

  • 40.

    https://doi.org/10.1007/s11892-017-0933-9.

  • 41.

    PMid:28942491.

  • 42.

    [16] Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: Causation or correlation? Nat Rev Gastroenterol Hepatol 2017; 14: 573-584.

  • 43.

    https://doi.org/10.1038/nrgastro.2017.88.

  • 44.

    PMid:28743984 PMCid:PMC5880536.

  • 45.

    [17] Kareva I. Concise review: metabolism and gut microbiota in cancer immunoediting CD8/Treg ratios immune cell homeostasis and cancer [Immuno] therapy. Stem Cells 2019; 37: 1273-1280.

  • 46.

    https://doi.org/10.1002/stem.3051.

  • 47.

    PMid:31260163.

  • 48.

    [18] Costa M, Weese JS. Methods and basic concepts for microbiota assessment. Vet J 2019; 249: 10-15.

  • 49.

    https://doi.org/10.1016/j.tvjl.2019.05.005.

  • 50.

    PMid:31239159.

  • 51.

    [19] Amrane S, Raoult D, Lagier JC. Metagenomics culturomics and the human gut microbiota. Expert Rev Anti-Infect Ther 2018; 16: 373-375.

  • 52.

    https://doi.org/10.1080/14787210.2018.1467268.

  • 53.

    PMid:29668334.

  • 54.

    [20] Rostami-Nejad M, Ishaq S, Al Dulaimi D, Zali MR, Rostami K. The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch Iran Med 2015; 18: 244-249.

  • 55.

    [21] Azimirad M, Rostami-Nejad M, Rostami K, Naji T, Zali MR. The susceptibility of coeliac disease intestinal microbiota to clostridium difficile infection. Am J Gastroenterol 2015; 110: 1740-1741.

  • 56.

    https://doi.org/10.1038/ajg.2015.360.

  • 57.

    PMid:26673511.

  • 58.

    [22] Duffy LC, Raiten DJ, Hubbard VS, Starke-Reed P. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. J Nutr 2015; 145: 1123S-1130S.

  • 59.

    https://doi.org/10.3945/jn.114.194936.

  • 60.

    PMid:25833886 PMCid:PMC4410496.

  • 61.

    [23] Gibiino G, Ianiro G, Cammarota G, Gasbarrini A. The gut microbiota: Its anatomy and physiology over a lifetime. Minerva Gastroenterol Dietol 2017; 63: 329-336.

  • 62.

    [24] Bibb S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 2016; 20: 4742-4749.

  • 63.

    [25] Ducarmon QR, Zwittink RD, Hornung BV, van Schaik W, Young VB, Kuijper EJ. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83: e0000719.

  • 64.

    https://doi.org/10.1128/MMBR.00007-19.

  • 65.

    PMid:31167904 PMCid:PMC6710460.

  • 66.

    [26] Odenwald MA, Turner JR. The intestinal epithelial barrier: A therapeutic target? Nat Rev Gastroenterol Hepatol 2017; 14: 9-21.

  • 67.

    https://doi.org/10.1038/nrgastro.2016.169.

  • 68.

    PMid:27848962 PMCid:PMC5554468.

  • 69.

    [27] Woo V, Alenghat T. Host-microbiota interactions: Epigenomic regulation. Curr Opin Immunol 2017; 44: 52-60.

  • 70.

    https://doi.org/10.1016/j.coi.2016.12.001.

  • 71.

    PMid:28103497 PMCid:PMC5451311.

  • 72.

    [28] Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4: 478-485.

  • 73.

    https://doi.org/10.1038/nri1373.

  • 74.

    PMid:15173836.

  • 75.

    [29] Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? a changing ecosystem across age environment diet and diseases. Microorganisms 2019; 7: 14.

  • 76.

    https://doi.org/10.3390/microorganisms7010014.

  • 77.

    PMid:30634578 PMCid:PMC6351938.

  • 78.

    [30] Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227.

  • 79.

    https://doi.org/10.1038/nature11053.

  • 80.

    PMid:22699611 PMCid:PMC3376388.

  • 81.

    [31] Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6: 237ra65.

  • 82.

    https://doi.org/10.1126/scitranslmed.3008599.

  • 83.

    PMid:24848255 PMCid:PMC4929217.

  • 84.

    [32] Wilczyska P, Skaryska E, Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: Questions and answers. J Matern Fetal Neonatal Med 2019; 32: 681-686.

  • 85.

    https://doi.org/10.1080/14767058.2017.1387888.

  • 86.

    PMid:28969463.

  • 87.

    [33] Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107: 11971-11975.

  • 88.

    https://doi.org/10.1073/pnas.1002601107.

  • 89.

    PMid:20566857 PMCid:PMC2900693.

  • 90.

    [34] Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185: 385-394.

  • 91.

    https://doi.org/10.1503/cmaj.121189.

  • 92.

    PMid:23401405 PMCid:PMC3602254.

  • 93.

    [35] Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients 2019; 11: 1613.

  • 94.

    https://doi.org/10.3390/nu11071613.

  • 95.

    PMid:31315227 PMCid:PMC6682904.

  • 96.

    [36] Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: A systematic review. BMC Gastroenterol 2016; 16: 86.

  • 97.

    https://doi.org/10.1186/s12876-016-0498-0.

  • 98.

    PMid:27475754 PMCid:PMC4967522.

  • 99.

    [37] Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014; 63: 559-566.

  • 100.

    https://doi.org/10.1136/gutjnl-2012-303249.

  • 101.

    PMid:23926244.

  • 102.

    [38] Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010; 125: e1433-e1440.

  • 103.

    https://doi.org/10.1542/peds.2009-2260.

  • 104.

    PMid:20478942.

  • 105.

    [39] Mrild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: A nationwide case-control study. Gastroenterology 2012; 142: 39-45.

  • 106.

    https://doi.org/10.1053/j.gastro.2011.09.047.

  • 107.

    PMid:21995948 PMCid:PMC3244504.

  • 108.

    [40] Emilsson L, Magnus MC, Strdal K. Perinatal risk factors for development of celiac disease in children based on the prospective norwegian mother and child cohort study. Clin Gastroenterol Hepatol 2015; 13: 921-927.

  • 109.

    https://doi.org/10.1016/j.cgh.2014.10.012.

  • 110.

    PMid:25459557 PMCid:PMC4402099.

  • 111.

    [41] Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011; 286: 34583-34592.

  • 112.

    https://doi.org/10.1074/jbc.M111.248138.

  • 113.

    PMid:21832085 PMCid:PMC3186357.

  • 114.

    [42] Nguyen TT, Kim JW, Park JS, Hwang KH, Jang TS, Kim CH, Kim D. Identification of oligosaccharides in human milk bound onto the toxin a carbohydrate binding site of clostridium difficile. J Microbiol Biotechnol 2016; 26: 659-665.

  • 115.

    https://doi.org/10.4014/jmb.1509.09034.

  • 116.

    PMid:26718473.

  • 117.

    [43] Wang C, Zhang M, Guo H, Yan J, Liu F, Chen J, et al. Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Mol Nutr Food Res 2019; e1900262.

  • 118.

    https://doi.org/10.1002/mnfr.201900262.

  • 119.

    PMid:31207104.

  • 120.

    [44] Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, et al. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode breast-feeding and antibiotics. J Pediatr Gastroenterol Nutr 2010; 51: 77-84.

  • 121.

    https://doi.org/10.1097/MPG.0b013e3181d1b11e.

  • 122.

    PMid:20479681.

  • 123.

    [45] Mrild K, Ludvigsson J, Sanz Y, Ludvigsson JF. Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: A cohort study. BMC Gastroenterol 2014; 14: 75.

  • 124.

    https://doi.org/10.1186/1471-230X-14-75.

  • 125.

    PMid:24731164 PMCid:PMC4021104.

  • 126.

    [46] Dydensborg Sander S, Nybo Andersen AM, Murray JA, Karlstad , Husby S, Strdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterology 2019; 156: 2217-2229.

  • 127.

    https://doi.org/10.1053/j.gastro.2019.02.039.

  • 128.

    PMid:30836095.

  • 129.

    [47] Canova C, Zabeo V, Pitter G, Romor P, Baldovin T, Zanotti R, Simonato L. Association of maternal education early infections and antibiotic use with celiac disease: A population-based birth cohort study in northeastern Italy. Am J Epidemiol 2014; 180: 76-85.

  • 130.

    https://doi.org/10.1093/aje/kwu101.

  • 131.

    PMid:24853109.

  • 132.

    [48] Mylus A, Hernell O, Gothefors L, Hammarstrm ML, Persson L, Stenlund H, Ivarsson A. Early infections are associated with increased risk for celiac disease: An incident case-referent study. BMC Pediatr 2012; 12: 194.

  • 133.

    https://doi.org/10.1186/1471-2431-12-194.

  • 134.

    PMid:23249321 PMCid:PMC3560215.

  • 135.

    [49] Mrild K, Ye W, Lebwohl B, Green PH, Blaser MJ, Card T, Ludvigsson JF. Antibiotic exposure and the development of coeliac disease: A nationwide case-control study. BMC Gastroenterol 2013; 13: 109.

  • 136.

    https://doi.org/10.1186/1471-230X-13-109.

  • 137.

    PMid:23834758 PMCid:PMC3720284.

  • 138.

    [50] Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell V, et al. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 2017; 171: 1217-1225.

  • 139.

    https://doi.org/10.1001/jamapediatrics.2017.2905.

  • 140.

    PMid:29052687 PMCid:PMC5716863.

  • 141.

    [51] Koodziej M, Patro-Gob B, Gieruszczak-Biaek D, Skrka A, Piecik-Lech M, Baron R, Szajewska H, on behalf of the SAWANTI Working Group. Association between early life [prenatal and postnatal] antibiotic administration and coeliac disease: A systematic review. Arch Dis Child 2019; 104: 1083-1089.

  • 142.

    https://doi.org/10.1136/archdischild-2019-317174.

  • 143.

    PMid:31129564.

  • 144.

    [52] Kemppainen KM, Lynch KF, Liu E, Lnnrot M, Simell V, Briese T, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol 2017; 15: 694-702.

  • 145.

    https://doi.org/10.1016/j.cgh.2016.10.033.

  • 146.

    PMid:27840181 PMCid:PMC5576726.

  • 147.

    [53] Mrild K, Kahrs CR, Tapia G, Stene LC, Strdal K. Infections and risk of celiac disease in childhood: A prospective nationwide cohort study. Am J Gastroenterol 2015; 110: 1475-1484.

  • 148.

    https://doi.org/10.1038/ajg.2015.287.

  • 149.

    PMid:26346866.

  • 150.

    [54] Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017; 356: 44-50.

  • 151.

    https://doi.org/10.1126/science.aah5298.

  • 152.

    PMid:28386004 PMCid:PMC5506690.

  • 153.

    [55] Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 1987; 28: 995-1001.

  • 154.

    https://doi.org/10.1136/gut.28.8.995.

  • 155.

    PMid:2822550 PMCid:PMC1433141.

  • 156.

    [56] Lhdeaho ML, Lehtinen M, Rissa HR, Hyty H, Reunala T, Mki M. Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int Arch Allergy Immunol 1993; 101: 272-276.

  • 157.

    https://doi.org/10.1159/000236457.

  • 158.

    PMid:8324388.

  • 159.

    [57] Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am J Gastroenterol 2006; 101: 2333-2340.

  • 160.

    https://doi.org/10.1111/j.1572-0241.2006.00741.x.

  • 161.

    PMid:17032199.

  • 162.

    [58] Gatti S, Lionetti E, Balanzoni L, Verma AK, Galeazzi T, Gesuita R, et al. Increased prevalence of celiac disease in school-age children in Italy. Clin Gastroenterol Hepatol 2019; 18: 596-603.

  • 163.

    https://doi.org/10.1016/j.cgh.2019.06.013.

  • 164.

    PMid:31220637.

  • 165.

    [59] Corouge M, Loridant S, Fradin C, Salleron J, Damiens S, Moragues MD, et al. Humoral immunity links Candida albicans infection and celiac disease. PLoS ONE 2015; 10: e0121776.

  • 166.

    https://doi.org/10.1371/journal.pone.0121776.

  • 167.

    PMid:25793717 PMCid:PMC4368562.

  • 168.

    [60] D'Argenio V, Casaburi G, Precone V, Pagliuca C, Colicchio R, Sarnataro D, et al. No change in the mucosal gut mycobioma is associated with celiac disease-specific microbiome alteration in adult patients. Am J Gastroenterol 2016; 111: 1659-1661.

  • 169.

    https://doi.org/10.1038/ajg.2016.227.

  • 170.

    PMid:27808136.

  • 171.

    [61] Lebwohl B, Nobel YR, Green PH, Blaser MJ, Ludvigsson JF. Risk of Clostridium difficile infection in patients with celiac disease: a population-based study. Am J Gastroenterol 2017; 112: 1878-1884.

  • 172.

    https://doi.org/10.1038/ajg.2017.400.

  • 173.

    PMid:29087398 PMCid:PMC5798865.

  • 174.

    [62] Valitutti F, Trovato CM, Montuori M, Cucchiara SC. difficile and celiac disease: The "difficile" to tell association. Am J Gastroenterol 2018; 113: 777-778.

  • 175.

    https://doi.org/10.1038/s41395-018-0017-8.

  • 176.

    PMid:29487408.

  • 177.

    [63] Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255-258.

  • 178.

    https://doi.org/10.1126/science.1209791.

  • 179.

    PMid:21998396 PMCid:PMC3321924.

  • 180.

    [64] Martn R, Chamignon C, Mhedbi-Hajri N, Chain F, Derrien M, Escribano-Vzquez U, et al. The potential probiotic Lactobacillus rhamnosus CNCM I3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep 2019; 9: 5398.

  • 181.

    https://doi.org/10.1038/s41598-019-41738-5.

  • 182.

    PMid:30931953 PMCid:PMC6443702.

  • 183.

    [65] Van der Lugt B, Van Beek AA, Aalvink S, Meijer B, Sovran B, Vermeij WP, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1 -/7 mice. Immun Ageing 2019; 16: 6.

  • 184.

    https://doi.org/10.1186/s12979-019-0145-z.

  • 185.

    PMid:30899315 PMCid:PMC6408808.

  • 186.

    [66] Shen X, Cui H, Xu X. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australas J Anim Sci 2019; 33: 1352-1359.

  • 187.

    https://doi.org/10.5713/ajas.18.0973.

  • 188.

    PMid:31010962 PMCid:PMC7322641.

  • 189.

    [67] Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543-547.

  • 190.

    https://doi.org/10.1038/nature09646.

  • 191.

    PMid:21270894.

  • 192.

    [68] Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328-339.

  • 193.

    https://doi.org/10.1016/j.chom.2007.09.013.

  • 194.

    PMid:18005754.

  • 195.

    [69] Olivares M, Walker AW, Capilla A, Bentez-Pez A, Palau F, Parkhill J, et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 2018; 6: 36.

  • 196.

    https://doi.org/10.1186/s40168-018-0415-6.

  • 197.

    PMid:29458413 PMCid:PMC5819212.

  • 198.

    [70] Kalliomki M, Satokari R, Lhteenoja H, Vhmiko S, Grnlund J, Routi T, Salminen S. Expression of microbiota Toll-like receptors and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 2012; 54: 727-732.

  • 199.

    https://doi.org/10.1097/MPG.0b013e318241cfa8.

  • 200.

    PMid:22134550.

  • 201.

    [71] Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Bokodi G, et al. Increased mucosal expression of Toll-like receptor [TLR]2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr 2007; 45: 187-193.

  • 202.

    https://doi.org/10.1097/MPG.0b013e318064514a.

  • 203.

    PMid:17667714.

  • 204.

    [72] Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004; 126: 1054-1070.

  • 205.

    https://doi.org/10.1053/j.gastro.2004.01.007.

  • 206.

    PMid:15057745.

  • 207.

    [73] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336: 1268-1273.

  • 208.

    https://doi.org/10.1126/science.1223490.

  • 209.

    PMid:22674334 PMCid:PMC4420145.

  • 210.

    [74] Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids GPCR and inflammatory bowel diseases. J Gastroenterol 2017; 52: 1-8.

  • 211.

    https://doi.org/10.1007/s00535-016-1242-9.

  • 212.

    PMid:27448578 PMCid:PMC5215992.

  • 213.

    [75] Schilderink R, Verseijden C, De Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol 2013; 4: 226.

  • 214.

    https://doi.org/10.3389/fimmu.2013.00414.

  • 215.

    https://doi.org/10.3389/fimmu.2013.00226.

  • 216.

    PMid:23914191 PMCid:PMC3730085.

  • 217.

    [76] Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, et al. Proinflammatory cytokine interferon- and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol 2017; 187: 490-506.

  • 218.

    https://doi.org/10.1111/cei.12911.

  • 219.

    PMid:27936497 PMCid:PMC5290237.

  • 220.

    [77] Freire R, Ingano L, Serena G, Cetinbas M, Anselmo A, Sapone A, et al. Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease. Sci Rep 2019; 9: 7029.

  • 221.

    https://doi.org/10.1038/s41598-019-43426-w.

  • 222.

    PMid:31065051 PMCid:PMC6505524.

  • 223.

    [78] De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, et al. Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 2010; 12: 1-10.

  • 224.

    [79] Olivares M, Bentez-Pez A, de Palma G, Capilla A, Nova E, Castillejo G, et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes 2018; 9: 551-558.

  • 225.

    https://doi.org/10.1080/19490976.2018.1451276.

  • 226.

    PMid:29672211 PMCid:PMC6287676.

  • 227.

    [80] Palma GD, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: The PROFICEL study. PLoS ONE 2012; 7: e30791.

  • 228.

    https://doi.org/10.1371/journal.pone.0030791.

  • 229.

    PMid:22319588 PMCid:PMC3272021.

  • 230.

    [81] Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm 2008; 5: 19.

  • 231.

    https://doi.org/10.1186/1476-9255-5-19.

  • 232.

    PMid:18980693 PMCid:PMC2640389.

  • 233.

    [82] Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venlinen J, Mki M, Kaukinen K. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 2008; 152: 552-558.

  • 234.

    https://doi.org/10.1111/j.1365-2249.2008.03635.x.

  • 235.

    PMid:18422736 PMCid:PMC2453197.

  • 236.

    [83] Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS ONE 2012: 7: e30744.

  • 237.

    https://doi.org/10.1371/journal.pone.0030744.

  • 238.

    PMid:22348021 PMCid:PMC3277586.

  • 239.

    [84] McCarville JL, Dong J, Caminero A, Bermudez-Brito M, Jury J, Murray JA, et al. A commensal bifidobacterium longum strain prevents gluten-related immunopathology in mice through expression of a serine protease inhibitor. Appl Environ Microbiol 2017; 83: e01323-1417.

  • 240.

    https://doi.org/10.1128/AEM.01323-17.

  • 241.

    PMid:28778891 PMCid:PMC5601352.

  • 242.

    [85] Pinto-Snchez MI, Smecuol EC, Temprano MP, Sugai E, Gonzlez A, Moreno ML, et al. Bifidobacterium infantis NLS super strain reduces the expression of -Defensin-5 a marker of innate immunity in the mucosa of active celiac disease patients. J Clin Gastroenterol 2017; 51: 814-817.

  • 243.

    https://doi.org/10.1097/MCG.0000000000000687.

  • 244.

    PMid:27636409.

  • 245.

    [86] Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2017; 8: 150-160.

  • 246.

    https://doi.org/10.4291/wjgp.v8.i4.150.

  • 247.

    PMid:29184701 PMCid:PMC5696613.

  • 248.

    [87] Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2007; 9: 804-816.

  • 249.

    https://doi.org/10.1111/j.1462-5822.2006.00836.x.

  • 250.

    PMid:17087734.

  • 251.

    [88] D'Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine 2009; 48: 254-259.

  • 252.

    https://doi.org/10.1016/j.cyto.2009.08.003.

  • 253.

    PMid:19736022.

  • 254.

    [89] D'Arienzo R, Stefanile R, Maurano F, Mazzarella G, Ricca E, Troncone R, et al. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol 2011; 74: 335-341.

  • 255.

    https://doi.org/10.1111/j.1365-3083.2011.02582.x.

  • 256.

    PMid:21615450.

  • 257.

    [90] Snchez E, Laparra JM, Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 2012; 78: 6507-6515.

  • 258.

    https://doi.org/10.1128/AEM.00563-12.

  • 259.

    PMid:22773639 PMCid:PMC3426693.

  • 260.

    [91] Sjberg V, Sandstrm O, Hedberg M, Hammarstrm S, Hernell O, Hammarstrm ML. Intestinal Tcell responses in celiac disease-Impact of celiac disease associated bacteria. PLoS ONE 2013; 8: e53414.

  • 261.

    https://doi.org/10.1371/journal.pone.0053414.

  • 262.

    PMid:23326425 PMCid:PMC3541273.

  • 263.

    [92] La Scaleia R, Barba M, Di Nardo G, Bonamico M, Oliva S, Nenna R, et al. Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age and their disturbance in celiac disease. Mucosal Immunol 2012; 5: 513-523.

  • 264.

    https://doi.org/10.1038/mi.2012.26.

  • 265.

    PMid:22569303.

  • 266.

    [93] Labruna G, Nanayakkara M, Pagliuca C, Nunziato M, Iaffaldano L, D'Argenio V, et al. Celiac disease-associated Neisseria flavescens decreases mitochondrial respiration in CaCo-2 epithelial cells: Impact of Lactobacillus paracasei CBA L74 on bacterial-induced cellular imbalance. Cell Microbiol 2019; 21: e13035.

  • 267.

    https://doi.org/10.1111/cmi.13035.

  • 268.

    PMid:31042331 PMCid:PMC6618323.

  • 269.

    [94] D'Argenio V, Casaburi G, Precone V, Pagliuca C, Colicchio R, Sarnataro D, et al. Metagenomics reveals dysbiosis and a potentially pathogenic n. flavescens strain in duodenum of adult celiac patients. Am J Gastroenterol 2016; 111: 879-890.

  • 270.

    https://doi.org/10.1038/ajg.2016.95.

  • 271.

    PMid:27045926 PMCid:PMC4897008.

  • 272.

    [95] Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol 2015; 185: 2969-2982.

  • 273.

    https://doi.org/10.1016/j.ajpath.2015.07.018.

  • 274.

    PMid:26456581 PMCid:PMC4630176.

  • 275.

    [96] Jakobsson HE, Rodrguez-Pieiro AM, Schtte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015; 16: 164-177.

  • 276.

    https://doi.org/10.15252/embr.201439263.

  • 277.

    PMid:25525071 PMCid:PMC4328744.

  • 278.

    [97] De Palma G, Kamanova J, Cinova J, Olivares M, Drasarova H, Tuckova L, Sanz Y. Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: Relevance for celiac disease. J Leukoc Biol 2012; 92: 1043-1054.

  • 279.

    https://doi.org/10.1189/jlb.1111581.

  • 280.

    PMid:22891290.

  • 281.

    [98] Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 2016; 151: 670-683.

  • 282.

    https://doi.org/10.1053/j.gastro.2016.06.041.

  • 283.

    PMid:27373514.

  • 284.

    [99] Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem 2010; 109: 801-807.

  • 285.

    https://doi.org/10.1002/jcb.22459.

  • 286.

    PMid:20052669.

  • 287.

    [100] Caminero A, McCarville JL, Zevallos VF, Pigrau M, Yu XB, Jury J, et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology 2019; 156: 2266-2280.

  • 288.

    https://doi.org/10.1053/j.gastro.2019.02.028.

  • 289.

    PMid:30802444.

  • 290.

    [101] Papista C, Gerakopoulos V, Kourelis A, Sounidaki M Kontana A, Berthelot L, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Investig 2012; 92: 625-635.

  • 291.

    https://doi.org/10.1038/labinvest.2012.13.

  • 292.

    PMid:22330344.

  • 293.

    [102] Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin Microbiol Infect 2013; 19: E386-E394.

  • 294.

    https://doi.org/10.1111/1469-0691.12249.

  • 295.

    PMid:23714165 PMCid:PMC3749263.

  • 296.

    [103] Knig J, Brummer RJ. Is an enzyme supplement for celiac disease finally on the cards? Expert Rev Gastroenterol Hepatol 2018; 12: 531-533.

  • 297.

    https://doi.org/10.1080/17474124.2018.1473762.

  • 298.

    PMid:29730969.

  • 299.

    [104] Valitutti F, Trovato CM, Montuori M, Cucchiara S. Pediatric celiac disease: follow-up in the spotlight. Adv Nutr 2017; 8: 356-361.

  • 300.

    https://doi.org/10.3945/an.116.013292.

  • 301.

    PMid:28298278 PMCid:PMC5347098.

  • 302.

    [105] Norsa L, Tomba C, Agostoni C, Branchi F, Bardella MT, Roncoroni L, et al. Gluten-free diet or alternative therapy: A survey on what parents of celiac children want. Int J Food Sci Nutr 2015; 66: 590-594.

  • 303.

    https://doi.org/10.3109/09637486.2015.1064872.

  • 304.

    PMid:26171630.

  • 305.

    [106] Forsberg G, Fahlgren A, Hrstedt P, Hammarstrm S, Hernell O, Hammarstrm ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 2004; 99: 894-904.

  • 306.

    https://doi.org/10.1111/j.1572-0241.2004.04157.x.

  • 307.

    PMid:15128357.

  • 308.

    [107] Ou G, Hedberg M, Hrstedt P, Baranov V, Forsberg G, Drobni M, et al. Proximal small intestinal microbiota and identification of rodshaped bacteria associated with childhood celiac disease. Am J Gastroenterol 2009; 104: 3058-3067.

  • 309.

    https://doi.org/10.1038/ajg.2009.524.

  • 310.

    PMid:19755974.

  • 311.

    [108] Sanz Y, Snchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 2007; 51: 562-568.

  • 312.

    https://doi.org/10.1111/j.1574-695X.2007.00337.x.

  • 313.

    PMid:17919298.

  • 314.

    [109] Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007; 56: 1669-1674.

  • 315.

    https://doi.org/10.1099/jmm.0.47410-0.

  • 316.

    PMid:18033837.

  • 317.

    [110] Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 2009; 62: 264-269.

  • 318.

    https://doi.org/10.1136/jcp.2008.061366.

  • 319.

    PMid:18996905.

  • 320.

    [111] De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 2010; 10: 63.

  • 321.

    https://doi.org/10.1186/1471-2180-10-63.

  • 322.

    PMid:20181275 PMCid:PMC2843610.

  • 323.

    [112] Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, et al. A distinctive 'microbial signature' in celiac pediatric patients. BMC Microbiol 2010; 10: 175.

  • 324.

    https://doi.org/10.1186/1471-2180-10-175.

  • 325.

    PMid:20565734 PMCid:PMC2906462.

  • 326.

    [113] Snchez E, Donat E, Ribes-Koninckx C, Fernndez-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol 2013; 79: 5472-5479.

  • 327.

    https://doi.org/10.1128/AEM.00869-13.

  • 328.

    PMid:23835180 PMCid:PMC3754165.

  • 329.

    [114] Cheng J, Kalliomki M, Heilig HG, Palva A, Lhteenoja H, De Vos WM, et al. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol 2013; 13: 113.

  • 330.

    https://doi.org/10.1186/1471-230X-13-113.

  • 331.

    PMid:23844808 PMCid:PMC3716955.

  • 332.

    [115] De Meij TG, Budding AE, Grasman ME, Kneepkens CM, Savelkoul PH, Mearin ML. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scand J Gastroenterol 2013; 48: 530-536.

  • 333.

    https://doi.org/10.3109/00365521.2013.775666.

  • 334.

    PMid:23534388.

  • 335.

    [116] Nistal E, Caminero A, Herrn AR, Prez-Andres J, Vivas S, Ruiz de Morales JM, et al. Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J Appl Microbiol 2016; 120: 1691-700.

  • 336.

    https://doi.org/10.1111/jam.13111.

  • 337.

    PMid:26913982.

  • 338.

    [117] Nistal E, Caminero A, Herrn AR, Arias L, Vivas S, de Morales JM, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: Effect of age gluten diet and disease. Inflamm Bowel Dis 2012; 18: 649-656.

  • 339.

    https://doi.org/10.1002/ibd.21830.

  • 340.

    PMid:21826768.

  • 341.

    [118] Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Senz de Miera LE, Rodrguez-Aparicio LB, Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 2012; 94: 1724-1729.

  • 342.

    https://doi.org/10.1016/j.biochi.2012.03.025.

  • 343.

    PMid:22542995.

  • 344.

    [119] Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, et al. Comparison of small gut and whole gut microbiota of first degree relatives with adult celiac disease patients and controls. Front Microbiol 2019; 10: 164.

  • 345.

    https://doi.org/10.3389/fmicb.2019.00164.

  • 346.

    PMid:30800106 PMCid:PMC6376745.

  • 347.

    [120] Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 2013; 19: 934-941.

  • 348.

    https://doi.org/10.1097/MIB.0b013e31828029a9.

  • 349.

    PMid:23478804.

  • 350.

    [121] Snchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol 2008; 8: 50.

  • 351.

    https://doi.org/10.1186/1471-230X-8-50.

  • 352.

    PMid:18983674 PMCid:PMC2615025.

  • 353.

    [122] Snchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol 2012; 65: 830-834.

  • 354.

    https://doi.org/10.1136/jclinpath-2012-200759.

  • 355.

    PMid:22718843.

  • 356.

    [123] Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 2015; 64: 406-417.

  • 357.

    https://doi.org/10.1136/gutjnl-2014-306931.

  • 358.

    PMid:24939571.

  • 359.

    [124] Snchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, et al. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol 2011; 77: 5316-5323.

  • 360.

    https://doi.org/10.1128/AEM.00365-11.

  • 361.

    PMid:21642397 PMCid:PMC3147488.

  • 362.

    [125] Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE 2012; 7: e33387.

  • 363.

    https://doi.org/10.1371/journal.pone.0033387.

  • 364.

    PMid:22432018 PMCid:PMC3303818.

  • 365.

    [126] Rintala A, Riikonen I, Toivonen A, Pietil S, Munukka E, Pursiheimo JP, et al. Early fecal microbiota composition in children who later develop celiac disease and associated autoimmunity. Scand J Gastroenterol 2018; 53: 403-409.

  • 366.

    https://doi.org/10.1080/00365521.2018.1444788.

  • 367.

    PMid:29504486.

  • 368.

    [127] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.

  • 369.

    https://doi.org/10.1038/nature08821.

  • 370.

    PMid:20203603 PMCid:PMC3779803.

  • 371.

    [128] Leonard MM, Fasano A. The microbiome as a possible target to prevent celiac disease. Expert Rev Gastroenterol Hepatol 2016; 10: 555-556.

  • 372.

    https://doi.org/10.1586/17474124.2016.1166954.

  • 373.

    PMid:26999627 PMCid:PMC5278927.

  • 374.

    [129] Leonard MM, Camhi S, Huedo-Medina TB, Fasano A. Celiac disease genomic environmental microbiome and metabolomic [CDGEMM] study design: approach to the future of personalized prevention of celiac disease. Nutrients 2015; 7: 9325-9336.

  • 375.

    https://doi.org/10.3390/nu7115470.

  • 376.

    PMid:26569299 PMCid:PMC4663598.

  • 377.

    [1] Dicke WK, Weijers HA, van de Kamer JH. Coeliac disease. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr Stockh 1953; 42: 34-42.

  • 378.

    https://doi.org/10.1111/j.1651-2227.1953.tb05563.x.

  • 379.

    PMid:13050382.

  • 380.

    [2] Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten HLA status and the risk of celiac disease in children. N Engl J Med 2014; 371: 1295-1303.

  • 381.

    https://doi.org/10.1056/NEJMoa1400697.

  • 382.

    PMid:25271602.

  • 383.

    [3] Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2018; 16: 823-836.

  • 384.

    https://doi.org/10.1016/j.cgh.2017.06.037.

  • 385.

    PMid:29551598.

  • 386.

    [4] Ashtari S, Pourhoseingholi MA, Rostami K, Asadzadeh-Aghdaei H, Rostami-Nejad M, et al. Prevalence of gluten-related disorders in asia pacific region: a systematic review. J Gastrointestin Liver Dis 2019; 28: 95-105.

  • 387.

    https://doi.org/10.15403/jgld.2014.1121.281.sys.

  • 388.

    PMid:30851178.

  • 389.

    [5] Rostami Nejad M, Mahbobipour H, Fazeli Z, Mashayekhi R, Mirsattari D, Nazemalhosseini Mojarad E, et al. Celiac disease in dyspeptic patients. Koomesh 2011; 12: 209-214. (Persian).

  • 390.

    [6] Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med 2010; 42: 530-538.

  • 391.

    https://doi.org/10.3109/07853890.2010.514285.

  • 392.

    PMid:20868314.

  • 393.

    [7] Trovato CM, Montuori M, Anania C, Barbato M, Vestri AR, Guida S, et al. Are ESPGHAN "biopsy-sparing" guidelines for celiac disease also suitable for asymptomatic patients? Am J Gastroenterol 2015; 110: 1485-1489.

  • 394.

    https://doi.org/10.1038/ajg.2015.285.

  • 395.

    PMid:26372508.

  • 396.

    [8] Tiberti C, Montuori M, Panimolle F, Trovato CM, Anania C, Valitutti F, et al. Screening for Type 1 diabetes- thyroid- gastric- and adrenal-specific humoral autoimmunity in 529 children and adolescents with celiac disease at diagnosis identifies as positive one in every nine patients. Diabetes Care 2017; 40: e10-e11.

  • 397.

    https://doi.org/10.2337/dc16-2095.

  • 398.

    PMid:27899493.

  • 399.

    [9] Catassi C, Gatti S, Lionetti E. World perspective and celiac disease epidemiology. Dig Dis 2015; 33: 141-146.

  • 400.

    https://doi.org/10.1159/000369518.

  • 401.

    PMid:25925915.

  • 402.

    [10] Ivarsson A, Mylus A, Norstrm F, Van der Pals M, Rosn A, Hgberg L, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 2013; 131: e687-e694.

  • 403.

    https://doi.org/10.1542/peds.2012-1015.

  • 404.

    PMid:23420914.

  • 405.

    [11] Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 2014; 371: 1304-1315.

  • 406.

    https://doi.org/10.1056/NEJMoa1404172.

  • 407.

    PMid:25271603.

  • 408.

    [12] Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease Gut 2002; 50: 624-628.

  • 409.

    https://doi.org/10.1136/gut.50.5.624.

  • 410.

    PMid:11950806 PMCid:PMC1773191.

  • 411.

    [13] Mashayekhi K, Rostami Nejad M, Amani D, Rostami K, Rezaei-Tavirani M, Zali MR. A rapid and sensitive assay to identify HLADQ2/8 risk alleles for celiac disease using real-time PCR method. Gastroenterol Hepatol Bed Bench 2018; 11: 250-258.

  • 412.

    [14] Maruvada P, Leone V, Kaplan LM, Chang EB. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017; 22: 589-599.

  • 413.

    https://doi.org/10.1016/j.chom.2017.10.005.

  • 414.

    PMid:29120742.

  • 415.

    [15] Knip M, Honkanen J. Modulation of Type 1 diabetes risk by the intestinal microbiome. Curr Diab Rep 2017; 17: 105.

  • 416.

    https://doi.org/10.1007/s11892-017-0933-9.

  • 417.

    PMid:28942491.

  • 418.

    [16] Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: Causation or correlation? Nat Rev Gastroenterol Hepatol 2017; 14: 573-584.

  • 419.

    https://doi.org/10.1038/nrgastro.2017.88.

  • 420.

    PMid:28743984 PMCid:PMC5880536.

  • 421.

    [17] Kareva I. Concise review: metabolism and gut microbiota in cancer immunoediting CD8/Treg ratios immune cell homeostasis and cancer [Immuno] therapy. Stem Cells 2019; 37: 1273-1280.

  • 422.

    https://doi.org/10.1002/stem.3051.

  • 423.

    PMid:31260163.

  • 424.

    [18] Costa M, Weese JS. Methods and basic concepts for microbiota assessment. Vet J 2019; 249: 10-15.

  • 425.

    https://doi.org/10.1016/j.tvjl.2019.05.005.

  • 426.

    PMid:31239159.

  • 427.

    [19] Amrane S, Raoult D, Lagier JC. Metagenomics culturomics and the human gut microbiota. Expert Rev Anti-Infect Ther 2018; 16: 373-375.

  • 428.

    https://doi.org/10.1080/14787210.2018.1467268.

  • 429.

    PMid:29668334.

  • 430.

    [20] Rostami-Nejad M, Ishaq S, Al Dulaimi D, Zali MR, Rostami K. The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch Iran Med 2015; 18: 244-249.

  • 431.

    [21] Azimirad M, Rostami-Nejad M, Rostami K, Naji T, Zali MR. The susceptibility of coeliac disease intestinal microbiota to clostridium difficile infection. Am J Gastroenterol 2015; 110: 1740-1741.

  • 432.

    https://doi.org/10.1038/ajg.2015.360.

  • 433.

    PMid:26673511.

  • 434.

    [22] Duffy LC, Raiten DJ, Hubbard VS, Starke-Reed P. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. J Nutr 2015; 145: 1123S-1130S.

  • 435.

    https://doi.org/10.3945/jn.114.194936.

  • 436.

    PMid:25833886 PMCid:PMC4410496.

  • 437.

    [23] Gibiino G, Ianiro G, Cammarota G, Gasbarrini A. The gut microbiota: Its anatomy and physiology over a lifetime. Minerva Gastroenterol Dietol 2017; 63: 329-336.

  • 438.

    [24] Bibb S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 2016; 20: 4742-4749.

  • 439.

    [25] Ducarmon QR, Zwittink RD, Hornung BV, van Schaik W, Young VB, Kuijper EJ. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83: e0000719.

  • 440.

    https://doi.org/10.1128/MMBR.00007-19.

  • 441.

    PMid:31167904 PMCid:PMC6710460.

  • 442.

    [26] Odenwald MA, Turner JR. The intestinal epithelial barrier: A therapeutic target? Nat Rev Gastroenterol Hepatol 2017; 14: 9-21.

  • 443.

    https://doi.org/10.1038/nrgastro.2016.169.

  • 444.

    PMid:27848962 PMCid:PMC5554468.

  • 445.

    [27] Woo V, Alenghat T. Host-microbiota interactions: Epigenomic regulation. Curr Opin Immunol 2017; 44: 52-60.

  • 446.

    https://doi.org/10.1016/j.coi.2016.12.001.

  • 447.

    PMid:28103497 PMCid:PMC5451311.

  • 448.

    [28] Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4: 478-485.

  • 449.

    https://doi.org/10.1038/nri1373.

  • 450.

    PMid:15173836.

  • 451.

    [29] Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? a changing ecosystem across age environment diet and diseases. Microorganisms 2019; 7: 14.

  • 452.

    https://doi.org/10.3390/microorganisms7010014.

  • 453.

    PMid:30634578 PMCid:PMC6351938.

  • 454.

    [30] Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227.

  • 455.

    https://doi.org/10.1038/nature11053.

  • 456.

    PMid:22699611 PMCid:PMC3376388.

  • 457.

    [31] Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6: 237ra65.

  • 458.

    https://doi.org/10.1126/scitranslmed.3008599.

  • 459.

    PMid:24848255 PMCid:PMC4929217.

  • 460.

    [32] Wilczyska P, Skaryska E, Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: Questions and answers. J Matern Fetal Neonatal Med 2019; 32: 681-686.

  • 461.

    https://doi.org/10.1080/14767058.2017.1387888.

  • 462.

    PMid:28969463.

  • 463.

    [33] Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107: 11971-11975.

  • 464.

    https://doi.org/10.1073/pnas.1002601107.

  • 465.

    PMid:20566857 PMCid:PMC2900693.

  • 466.

    [34] Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185: 385-394.

  • 467.

    https://doi.org/10.1503/cmaj.121189.

  • 468.

    PMid:23401405 PMCid:PMC3602254.

  • 469.

    [35] Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients 2019; 11: 1613.

  • 470.

    https://doi.org/10.3390/nu11071613.

  • 471.

    PMid:31315227 PMCid:PMC6682904.

  • 472.

    [36] Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: A systematic review. BMC Gastroenterol 2016; 16: 86.

  • 473.

    https://doi.org/10.1186/s12876-016-0498-0.

  • 474.

    PMid:27475754 PMCid:PMC4967522.

  • 475.

    [37] Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014; 63: 559-566.

  • 476.

    https://doi.org/10.1136/gutjnl-2012-303249.

  • 477.

    PMid:23926244.

  • 478.

    [38] Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010; 125: e1433-e1440.

  • 479.

    https://doi.org/10.1542/peds.2009-2260.

  • 480.

    PMid:20478942.

  • 481.

    [39] Mrild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: A nationwide case-control study. Gastroenterology 2012; 142: 39-45.

  • 482.

    https://doi.org/10.1053/j.gastro.2011.09.047.

  • 483.

    PMid:21995948 PMCid:PMC3244504.

  • 484.

    [40] Emilsson L, Magnus MC, Strdal K. Perinatal risk factors for development of celiac disease in children based on the prospective norwegian mother and child cohort study. Clin Gastroenterol Hepatol 2015; 13: 921-927.

  • 485.

    https://doi.org/10.1016/j.cgh.2014.10.012.

  • 486.

    PMid:25459557 PMCid:PMC4402099.

  • 487.

    [41] Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011; 286: 34583-34592.

  • 488.

    https://doi.org/10.1074/jbc.M111.248138.

  • 489.

    PMid:21832085 PMCid:PMC3186357.

  • 490.

    [42] Nguyen TT, Kim JW, Park JS, Hwang KH, Jang TS, Kim CH, Kim D. Identification of oligosaccharides in human milk bound onto the toxin a carbohydrate binding site of clostridium difficile. J Microbiol Biotechnol 2016; 26: 659-665.

  • 491.

    https://doi.org/10.4014/jmb.1509.09034.

  • 492.

    PMid:26718473.

  • 493.

    [43] Wang C, Zhang M, Guo H, Yan J, Liu F, Chen J, et al. Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Mol Nutr Food Res 2019; e1900262.

  • 494.

    https://doi.org/10.1002/mnfr.201900262.

  • 495.

    PMid:31207104.

  • 496.

    [44] Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, et al. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode breast-feeding and antibiotics. J Pediatr Gastroenterol Nutr 2010; 51: 77-84.

  • 497.

    https://doi.org/10.1097/MPG.0b013e3181d1b11e.

  • 498.

    PMid:20479681.

  • 499.

    [45] Mrild K, Ludvigsson J, Sanz Y, Ludvigsson JF. Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: A cohort study. BMC Gastroenterol 2014; 14: 75.

  • 500.

    https://doi.org/10.1186/1471-230X-14-75.

  • 501.

    PMid:24731164 PMCid:PMC4021104.

  • 502.

    [46] Dydensborg Sander S, Nybo Andersen AM, Murray JA, Karlstad , Husby S, Strdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterology 2019; 156: 2217-2229.

  • 503.

    https://doi.org/10.1053/j.gastro.2019.02.039.

  • 504.

    PMid:30836095.

  • 505.

    [47] Canova C, Zabeo V, Pitter G, Romor P, Baldovin T, Zanotti R, Simonato L. Association of maternal education early infections and antibiotic use with celiac disease: A population-based birth cohort study in northeastern Italy. Am J Epidemiol 2014; 180: 76-85.

  • 506.

    https://doi.org/10.1093/aje/kwu101.

  • 507.

    PMid:24853109.

  • 508.

    [48] Mylus A, Hernell O, Gothefors L, Hammarstrm ML, Persson L, Stenlund H, Ivarsson A. Early infections are associated with increased risk for celiac disease: An incident case-referent study. BMC Pediatr 2012; 12: 194.

  • 509.

    https://doi.org/10.1186/1471-2431-12-194.

  • 510.

    PMid:23249321 PMCid:PMC3560215.

  • 511.

    [49] Mrild K, Ye W, Lebwohl B, Green PH, Blaser MJ, Card T, Ludvigsson JF. Antibiotic exposure and the development of coeliac disease: A nationwide case-control study. BMC Gastroenterol 2013; 13: 109.

  • 512.

    https://doi.org/10.1186/1471-230X-13-109.

  • 513.

    PMid:23834758 PMCid:PMC3720284.

  • 514.

    [50] Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell V, et al. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 2017; 171: 1217-1225.

  • 515.

    https://doi.org/10.1001/jamapediatrics.2017.2905.

  • 516.

    PMid:29052687 PMCid:PMC5716863.

  • 517.

    [51] Koodziej M, Patro-Gob B, Gieruszczak-Biaek D, Skrka A, Piecik-Lech M, Baron R, Szajewska H, on behalf of the SAWANTI Working Group. Association between early life [prenatal and postnatal] antibiotic administration and coeliac disease: A systematic review. Arch Dis Child 2019; 104: 1083-1089.

  • 518.

    https://doi.org/10.1136/archdischild-2019-317174.

  • 519.

    PMid:31129564.

  • 520.

    [52] Kemppainen KM, Lynch KF, Liu E, Lnnrot M, Simell V, Briese T, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol 2017; 15: 694-702.

  • 521.

    https://doi.org/10.1016/j.cgh.2016.10.033.

  • 522.

    PMid:27840181 PMCid:PMC5576726.

  • 523.

    [53] Mrild K, Kahrs CR, Tapia G, Stene LC, Strdal K. Infections and risk of celiac disease in childhood: A prospective nationwide cohort study. Am J Gastroenterol 2015; 110: 1475-1484.

  • 524.

    https://doi.org/10.1038/ajg.2015.287.

  • 525.

    PMid:26346866.

  • 526.

    [54] Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017; 356: 44-50.

  • 527.

    https://doi.org/10.1126/science.aah5298.

  • 528.

    PMid:28386004 PMCid:PMC5506690.

  • 529.

    [55] Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 1987; 28: 995-1001.

  • 530.

    https://doi.org/10.1136/gut.28.8.995.

  • 531.

    PMid:2822550 PMCid:PMC1433141.

  • 532.

    [56] Lhdeaho ML, Lehtinen M, Rissa HR, Hyty H, Reunala T, Mki M. Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int Arch Allergy Immunol 1993; 101: 272-276.

  • 533.

    https://doi.org/10.1159/000236457.

  • 534.

    PMid:8324388.

  • 535.

    [57] Stene LC, Honeyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, Emery L, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am J Gastroenterol 2006; 101: 2333-2340.

  • 536.

    https://doi.org/10.1111/j.1572-0241.2006.00741.x.

  • 537.

    PMid:17032199.

  • 538.

    [58] Gatti S, Lionetti E, Balanzoni L, Verma AK, Galeazzi T, Gesuita R, et al. Increased prevalence of celiac disease in school-age children in Italy. Clin Gastroenterol Hepatol 2019; 18: 596-603.

  • 539.

    https://doi.org/10.1016/j.cgh.2019.06.013.

  • 540.

    PMid:31220637.

  • 541.

    [59] Corouge M, Loridant S, Fradin C, Salleron J, Damiens S, Moragues MD, et al. Humoral immunity links Candida albicans infection and celiac disease. PLoS ONE 2015; 10: e0121776.

  • 542.

    https://doi.org/10.1371/journal.pone.0121776.

  • 543.

    PMid:25793717 PMCid:PMC4368562.

  • 544.

    [60] D'Argenio V, Casaburi G, Precone V, Pagliuca C, Colicchio R, Sarnataro D, et al. No change in the mucosal gut mycobioma is associated with celiac disease-specific microbiome alteration in adult patients. Am J Gastroenterol 2016; 111: 1659-1661.

  • 545.

    https://doi.org/10.1038/ajg.2016.227.

  • 546.

    PMid:27808136.

  • 547.

    [61] Lebwohl B, Nobel YR, Green PH, Blaser MJ, Ludvigsson JF. Risk of Clostridium difficile infection in patients with celiac disease: a population-based study. Am J Gastroenterol 2017; 112: 1878-1884.

  • 548.

    https://doi.org/10.1038/ajg.2017.400.

  • 549.

    PMid:29087398 PMCid:PMC5798865.

  • 550.

    [62] Valitutti F, Trovato CM, Montuori M, Cucchiara SC. difficile and celiac disease: The "difficile" to tell association. Am J Gastroenterol 2018; 113: 777-778.

  • 551.

    https://doi.org/10.1038/s41395-018-0017-8.

  • 552.

    PMid:29487408.

  • 553.

    [63] Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255-258.

  • 554.

    https://doi.org/10.1126/science.1209791.

  • 555.

    PMid:21998396 PMCid:PMC3321924.

  • 556.

    [64] Martn R, Chamignon C, Mhedbi-Hajri N, Chain F, Derrien M, Escribano-Vzquez U, et al. The potential probiotic Lactobacillus rhamnosus CNCM I3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep 2019; 9: 5398.

  • 557.

    https://doi.org/10.1038/s41598-019-41738-5.

  • 558.

    PMid:30931953 PMCid:PMC6443702.

  • 559.

    [65] Van der Lugt B, Van Beek AA, Aalvink S, Meijer B, Sovran B, Vermeij WP, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1 -/7 mice. Immun Ageing 2019; 16: 6.

  • 560.

    https://doi.org/10.1186/s12979-019-0145-z.

  • 561.

    PMid:30899315 PMCid:PMC6408808.

  • 562.

    [66] Shen X, Cui H, Xu X. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australas J Anim Sci 2019; 33: 1352-1359.

  • 563.

    https://doi.org/10.5713/ajas.18.0973.

  • 564.

    PMid:31010962 PMCid:PMC7322641.

  • 565.

    [67] Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469: 543-547.

  • 566.

    https://doi.org/10.1038/nature09646.

  • 567.

    PMid:21270894.

  • 568.

    [68] Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328-339.

  • 569.

    https://doi.org/10.1016/j.chom.2007.09.013.

  • 570.

    PMid:18005754.

  • 571.

    [69] Olivares M, Walker AW, Capilla A, Bentez-Pez A, Palau F, Parkhill J, et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 2018; 6: 36.

  • 572.

    https://doi.org/10.1186/s40168-018-0415-6.

  • 573.

    PMid:29458413 PMCid:PMC5819212.

  • 574.

    [70] Kalliomki M, Satokari R, Lhteenoja H, Vhmiko S, Grnlund J, Routi T, Salminen S. Expression of microbiota Toll-like receptors and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 2012; 54: 727-732.

  • 575.

    https://doi.org/10.1097/MPG.0b013e318241cfa8.

  • 576.

    PMid:22134550.

  • 577.

    [71] Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Bokodi G, et al. Increased mucosal expression of Toll-like receptor [TLR]2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr 2007; 45: 187-193.

  • 578.

    https://doi.org/10.1097/MPG.0b013e318064514a.

  • 579.

    PMid:17667714.

  • 580.

    [72] Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004; 126: 1054-1070.

  • 581.

    https://doi.org/10.1053/j.gastro.2004.01.007.

  • 582.

    PMid:15057745.

  • 583.

    [73] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012; 336: 1268-1273.

  • 584.

    https://doi.org/10.1126/science.1223490.

  • 585.

    PMid:22674334 PMCid:PMC4420145.

  • 586.

    [74] Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids GPCR and inflammatory bowel diseases. J Gastroenterol 2017; 52: 1-8.

  • 587.

    https://doi.org/10.1007/s00535-016-1242-9.

  • 588.

    PMid:27448578 PMCid:PMC5215992.

  • 589.

    [75] Schilderink R, Verseijden C, De Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol 2013; 4: 226.

  • 590.

    https://doi.org/10.3389/fimmu.2013.00414.

  • 591.

    https://doi.org/10.3389/fimmu.2013.00226.

  • 592.

    PMid:23914191 PMCid:PMC3730085.

  • 593.

    [76] Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, et al. Proinflammatory cytokine interferon- and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol 2017; 187: 490-506.

  • 594.

    https://doi.org/10.1111/cei.12911.

  • 595.

    PMid:27936497 PMCid:PMC5290237.

  • 596.

    [77] Freire R, Ingano L, Serena G, Cetinbas M, Anselmo A, Sapone A, et al. Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease. Sci Rep 2019; 9: 7029.

  • 597.

    https://doi.org/10.1038/s41598-019-43426-w.

  • 598.

    PMid:31065051 PMCid:PMC6505524.

  • 599.

    [78] De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, et al. Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 2010; 12: 1-10.

  • 600.

    [79] Olivares M, Bentez-Pez A, de Palma G, Capilla A, Nova E, Castillejo G, et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes 2018; 9: 551-558.

  • 601.

    https://doi.org/10.1080/19490976.2018.1451276.

  • 602.

    PMid:29672211 PMCid:PMC6287676.

  • 603.

    [80] Palma GD, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: The PROFICEL study. PLoS ONE 2012; 7: e30791.

  • 604.

    https://doi.org/10.1371/journal.pone.0030791.

  • 605.

    PMid:22319588 PMCid:PMC3272021.

  • 606.

    [81] Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm 2008; 5: 19.

  • 607.

    https://doi.org/10.1186/1476-9255-5-19.

  • 608.

    PMid:18980693 PMCid:PMC2640389.

  • 609.

    [82] Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venlinen J, Mki M, Kaukinen K. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 2008; 152: 552-558.

  • 610.

    https://doi.org/10.1111/j.1365-2249.2008.03635.x.

  • 611.

    PMid:18422736 PMCid:PMC2453197.

  • 612.

    [83] Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS ONE 2012: 7: e30744.

  • 613.

    https://doi.org/10.1371/journal.pone.0030744.

  • 614.

    PMid:22348021 PMCid:PMC3277586.

  • 615.

    [84] McCarville JL, Dong J, Caminero A, Bermudez-Brito M, Jury J, Murray JA, et al. A commensal bifidobacterium longum strain prevents gluten-related immunopathology in mice through expression of a serine protease inhibitor. Appl Environ Microbiol 2017; 83: e01323-1417.

  • 616.

    https://doi.org/10.1128/AEM.01323-17.

  • 617.

    PMid:28778891 PMCid:PMC5601352.

  • 618.

    [85] Pinto-Snchez MI, Smecuol EC, Temprano MP, Sugai E, Gonzlez A, Moreno ML, et al. Bifidobacterium infantis NLS super strain reduces the expression of -Defensin-5 a marker of innate immunity in the mucosa of active celiac disease patients. J Clin Gastroenterol 2017; 51: 814-817.

  • 619.

    https://doi.org/10.1097/MCG.0000000000000687.

  • 620.

    PMid:27636409.

  • 621.

    [86] Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2017; 8: 150-160.

  • 622.

    https://doi.org/10.4291/wjgp.v8.i4.150.

  • 623.

    PMid:29184701 PMCid:PMC5696613.

  • 624.

    [87] Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2007; 9: 804-816.

  • 625.

    https://doi.org/10.1111/j.1462-5822.2006.00836.x.

  • 626.

    PMid:17087734.

  • 627.

    [88] D'Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine 2009; 48: 254-259.

  • 628.

    https://doi.org/10.1016/j.cyto.2009.08.003.

  • 629.

    PMid:19736022.

  • 630.

    [89] D'Arienzo R, Stefanile R, Maurano F, Mazzarella G, Ricca E, Troncone R, et al. Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol 2011; 74: 335-341.

  • 631.

    https://doi.org/10.1111/j.1365-3083.2011.02582.x.

  • 632.

    PMid:21615450.

  • 633.

    [90] Snchez E, Laparra JM, Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 2012; 78: 6507-6515.

  • 634.

    https://doi.org/10.1128/AEM.00563-12.

  • 635.

    PMid:22773639 PMCid:PMC3426693.

  • 636.

    [91] Sjberg V, Sandstrm O, Hedberg M, Hammarstrm S, Hernell O, Hammarstrm ML. Intestinal Tcell responses in celiac disease-Impact of celiac disease associated bacteria. PLoS ONE 2013; 8: e53414.

  • 637.

    https://doi.org/10.1371/journal.pone.0053414.

  • 638.

    PMid:23326425 PMCid:PMC3541273.

  • 639.

    [92] La Scaleia R, Barba M, Di Nardo G, Bonamico M, Oliva S, Nenna R, et al. Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age and their disturbance in celiac disease. Mucosal Immunol 2012; 5: 513-523.

  • 640.

    https://doi.org/10.1038/mi.2012.26.

  • 641.

    PMid:22569303.

  • 642.

    [93] Labruna G, Nanayakkara M, Pagliuca C, Nunziato M, Iaffaldano L, D'Argenio V, et al. Celiac disease-associated Neisseria flavescens decreases mitochondrial respiration in CaCo-2 epithelial cells: Impact of Lactobacillus paracasei CBA L74 on bacterial-induced cellular imbalance. Cell Microbiol 2019; 21: e13035.

  • 643.

    https://doi.org/10.1111/cmi.13035.

  • 644.

    PMid:31042331 PMCid:PMC6618323.

  • 645.

    [94] D'Argenio V, Casaburi G, Precone V, Pagliuca C, Colicchio R, Sarnataro D, et al. Metagenomics reveals dysbiosis and a potentially pathogenic n. flavescens strain in duodenum of adult celiac patients. Am J Gastroenterol 2016; 111: 879-890.

  • 646.

    https://doi.org/10.1038/ajg.2016.95.

  • 647.

    PMid:27045926 PMCid:PMC4897008.

  • 648.

    [95] Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol 2015; 185: 2969-2982.

  • 649.

    https://doi.org/10.1016/j.ajpath.2015.07.018.

  • 650.

    PMid:26456581 PMCid:PMC4630176.

  • 651.

    [96] Jakobsson HE, Rodrguez-Pieiro AM, Schtte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015; 16: 164-177.

  • 652.

    https://doi.org/10.15252/embr.201439263.

  • 653.

    PMid:25525071 PMCid:PMC4328744.

  • 654.

    [97] De Palma G, Kamanova J, Cinova J, Olivares M, Drasarova H, Tuckova L, Sanz Y. Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: Relevance for celiac disease. J Leukoc Biol 2012; 92: 1043-1054.

  • 655.

    https://doi.org/10.1189/jlb.1111581.

  • 656.

    PMid:22891290.

  • 657.

    [98] Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 2016; 151: 670-683.

  • 658.

    https://doi.org/10.1053/j.gastro.2016.06.041.

  • 659.

    PMid:27373514.

  • 660.

    [99] Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem 2010; 109: 801-807.

  • 661.

    https://doi.org/10.1002/jcb.22459.

  • 662.

    PMid:20052669.

  • 663.

    [100] Caminero A, McCarville JL, Zevallos VF, Pigrau M, Yu XB, Jury J, et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology 2019; 156: 2266-2280.

  • 664.

    https://doi.org/10.1053/j.gastro.2019.02.028.

  • 665.

    PMid:30802444.

  • 666.

    [101] Papista C, Gerakopoulos V, Kourelis A, Sounidaki M Kontana A, Berthelot L, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Investig 2012; 92: 625-635.

  • 667.

    https://doi.org/10.1038/labinvest.2012.13.

  • 668.

    PMid:22330344.

  • 669.

    [102] Fernandez-Feo M, Wei G, Blumenkranz G, Dewhirst FE, Schuppan D, Oppenheim FG, Helmerhorst EJ. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin Microbiol Infect 2013; 19: E386-E394.

  • 670.

    https://doi.org/10.1111/1469-0691.12249.

  • 671.

    PMid:23714165 PMCid:PMC3749263.

  • 672.

    [103] Knig J, Brummer RJ. Is an enzyme supplement for celiac disease finally on the cards? Expert Rev Gastroenterol Hepatol 2018; 12: 531-533.

  • 673.

    https://doi.org/10.1080/17474124.2018.1473762.

  • 674.

    PMid:29730969.

  • 675.

    [104] Valitutti F, Trovato CM, Montuori M, Cucchiara S. Pediatric celiac disease: follow-up in the spotlight. Adv Nutr 2017; 8: 356-361.

  • 676.

    https://doi.org/10.3945/an.116.013292.

  • 677.

    PMid:28298278 PMCid:PMC5347098.

  • 678.

    [105] Norsa L, Tomba C, Agostoni C, Branchi F, Bardella MT, Roncoroni L, et al. Gluten-free diet or alternative therapy: A survey on what parents of celiac children want. Int J Food Sci Nutr 2015; 66: 590-594.

  • 679.

    https://doi.org/10.3109/09637486.2015.1064872.

  • 680.

    PMid:26171630.

  • 681.

    [106] Forsberg G, Fahlgren A, Hrstedt P, Hammarstrm S, Hernell O, Hammarstrm ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 2004; 99: 894-904.

  • 682.

    https://doi.org/10.1111/j.1572-0241.2004.04157.x.

  • 683.

    PMid:15128357.

  • 684.

    [107] Ou G, Hedberg M, Hrstedt P, Baranov V, Forsberg G, Drobni M, et al. Proximal small intestinal microbiota and identification of rodshaped bacteria associated with childhood celiac disease. Am J Gastroenterol 2009; 104: 3058-3067.

  • 685.

    https://doi.org/10.1038/ajg.2009.524.

  • 686.

    PMid:19755974.

  • 687.

    [108] Sanz Y, Snchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 2007; 51: 562-568.

  • 688.

    https://doi.org/10.1111/j.1574-695X.2007.00337.x.

  • 689.

    PMid:17919298.

  • 690.

    [109] Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007; 56: 1669-1674.

  • 691.

    https://doi.org/10.1099/jmm.0.47410-0.

  • 692.

    PMid:18033837.

  • 693.

    [110] Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 2009; 62: 264-269.

  • 694.

    https://doi.org/10.1136/jcp.2008.061366.

  • 695.

    PMid:18996905.

  • 696.

    [111] De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 2010; 10: 63.

  • 697.

    https://doi.org/10.1186/1471-2180-10-63.

  • 698.

    PMid:20181275 PMCid:PMC2843610.

  • 699.

    [112] Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, et al. A distinctive 'microbial signature' in celiac pediatric patients. BMC Microbiol 2010; 10: 175.

  • 700.

    https://doi.org/10.1186/1471-2180-10-175.

  • 701.

    PMid:20565734 PMCid:PMC2906462.

  • 702.

    [113] Snchez E, Donat E, Ribes-Koninckx C, Fernndez-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol 2013; 79: 5472-5479.

  • 703.

    https://doi.org/10.1128/AEM.00869-13.

  • 704.

    PMid:23835180 PMCid:PMC3754165.

  • 705.

    [114] Cheng J, Kalliomki M, Heilig HG, Palva A, Lhteenoja H, De Vos WM, et al. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol 2013; 13: 113.

  • 706.

    https://doi.org/10.1186/1471-230X-13-113.

  • 707.

    PMid:23844808 PMCid:PMC3716955.

  • 708.

    [115] De Meij TG, Budding AE, Grasman ME, Kneepkens CM, Savelkoul PH, Mearin ML. Composition and diversity of the duodenal mucosa-associated microbiome in children with untreated coeliac disease. Scand J Gastroenterol 2013; 48: 530-536.

  • 709.

    https://doi.org/10.3109/00365521.2013.775666.

  • 710.

    PMid:23534388.

  • 711.

    [116] Nistal E, Caminero A, Herrn AR, Prez-Andres J, Vivas S, Ruiz de Morales JM, et al. Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J Appl Microbiol 2016; 120: 1691-700.

  • 712.

    https://doi.org/10.1111/jam.13111.

  • 713.

    PMid:26913982.

  • 714.

    [117] Nistal E, Caminero A, Herrn AR, Arias L, Vivas S, de Morales JM, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: Effect of age gluten diet and disease. Inflamm Bowel Dis 2012; 18: 649-656.

  • 715.

    https://doi.org/10.1002/ibd.21830.

  • 716.

    PMid:21826768.

  • 717.

    [118] Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Senz de Miera LE, Rodrguez-Aparicio LB, Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 2012; 94: 1724-1729.

  • 718.

    https://doi.org/10.1016/j.biochi.2012.03.025.

  • 719.

    PMid:22542995.

  • 720.

    [119] Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, et al. Comparison of small gut and whole gut microbiota of first degree relatives with adult celiac disease patients and controls. Front Microbiol 2019; 10: 164.

  • 721.

    https://doi.org/10.3389/fmicb.2019.00164.

  • 722.

    PMid:30800106 PMCid:PMC6376745.

  • 723.

    [120] Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 2013; 19: 934-941.

  • 724.

    https://doi.org/10.1097/MIB.0b013e31828029a9.

  • 725.

    PMid:23478804.

  • 726.

    [121] Snchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol 2008; 8: 50.

  • 727.

    https://doi.org/10.1186/1471-230X-8-50.

  • 728.

    PMid:18983674 PMCid:PMC2615025.

  • 729.

    [122] Snchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol 2012; 65: 830-834.

  • 730.

    https://doi.org/10.1136/jclinpath-2012-200759.

  • 731.

    PMid:22718843.

  • 732.

    [123] Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 2015; 64: 406-417.

  • 733.

    https://doi.org/10.1136/gutjnl-2014-306931.

  • 734.

    PMid:24939571.

  • 735.

    [124] Snchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, et al. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol 2011; 77: 5316-5323.

  • 736.

    https://doi.org/10.1128/AEM.00365-11.

  • 737.

    PMid:21642397 PMCid:PMC3147488.

  • 738.

    [125] Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE 2012; 7: e33387.

  • 739.

    https://doi.org/10.1371/journal.pone.0033387.

  • 740.

    PMid:22432018 PMCid:PMC3303818.

  • 741.

    [126] Rintala A, Riikonen I, Toivonen A, Pietil S, Munukka E, Pursiheimo JP, et al. Early fecal microbiota composition in children who later develop celiac disease and associated autoimmunity. Scand J Gastroenterol 2018; 53: 403-409.

  • 742.

    https://doi.org/10.1080/00365521.2018.1444788.

  • 743.

    PMid:29504486.

  • 744.

    [127] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.

  • 745.

    https://doi.org/10.1038/nature08821.

  • 746.

    PMid:20203603 PMCid:PMC3779803.

  • 747.

    [128] Leonard MM, Fasano A. The microbiome as a possible target to prevent celiac disease. Expert Rev Gastroenterol Hepatol 2016; 10: 555-556.

  • 748.

    https://doi.org/10.1586/17474124.2016.1166954.

  • 749.

    PMid:26999627 PMCid:PMC5278927.

  • 750.

    [129] Leonard MM, Camhi S, Huedo-Medina TB, Fasano A. Celiac disease genomic environmental microbiome and metabolomic [CDGEMM] study design: approach to the future of personalized prevention of celiac disease. Nutrients 2015; 7: 9325-9336.

  • 751.

    https://doi.org/10.3390/nu7115470.

  • 752.

    PMid:26569299 PMCid:PMC4663598.