Logo

Cardiac up-regulation of apolipoprotein D in a rat model of hypo- and hyperthyroidism

Author(s):
Marziyeh SalamiMarziyeh Salami, Hamid Reza SameniHamid Reza SameniHamid Reza Sameni ORCID, Abbas PakdelAbbas Pakdel,*, Abbas Ali VafaeiAbbas Ali Vafaei, Roghayeh PakdelRoghayeh PakdelRoghayeh Pakdel ORCID

Koomesh:Vol. 23, issue 3; 409-414
Published online:Aug 01, 2021
Article type:Research Article
Received:Jul 02, 2020
Accepted:Nov 01, 2020
How to Cite:Marziyeh SalamiHamid Reza SameniAbbas PakdelAbbas Ali VafaeiRoghayeh PakdelCardiac up-regulation of apolipoprotein D in a rat model of hypo- and hyperthyroidism.koomesh.23(3):e149961.

Abstract

References

  • 1.
    [1] Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH. Effects of thyroid hormones on the heart. Clin Investig Arterioscler 2014; 26: 296-309.
  • 2.
    https://doi.org/10.1016/j.arteri.2014.07.003.
  • 3.
    PMid:25438971.
  • 4.
    [2] De K, Ghosh G, Datta M, Konar A, Bandyopadhyay J, Bandyopadhyay D, Bhattacharya S, Bandyopadhyay A. Analysis of differentially expressed genes in hyperthyroid-induced hypertrophied heart by cDNA microarray. J Endocrinol 2004; 182: 303-314.
  • 5.
    https://doi.org/10.1677/joe.0.1820303.
  • 6.
    PMid:15283691.
  • 7.
    [3] Klein I, Danzi S. Thyroid disease and the heart. Circulation 2007; 116: 1725-1735.
  • 8.
    https://doi.org/10.1161/CIRCULATIONAHA.106.678326.
  • 9.
    PMid:17923583.
  • 10.
    [4] Stanciu AE, ZamfirChiruAnton A, Stanciu MM, Gheorghe DC. Impact of thyroid disease on heart failure. the role of the clinical cardiac electrophysiologist in the management of congestive heart failure 2017; 141.
  • 11.
    https://doi.org/10.5772/66283.
  • 12.
    [5] Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxid Med Cell Longev 2015; 2015: 854265.
  • 13.
    https://doi.org/10.1155/2015/854265.
  • 14.
    PMid:26146529 PMCid:PMC4471379.
  • 15.
    [6] Sabih DE, Inayatullah M. Managing thyroid dysfunction in selected special situations. Thyroid Res 2013; 6: 2.
  • 16.
    https://doi.org/10.1186/1756-6614-6-2.
  • 17.
    PMid:23379325 PMCid:PMC3626556.
  • 18.
    [7] Triggiani V, Iacoviello M, Monzani F, Puzzovivo A, Guida P, Forleo C, et al. Incidence and prevalence of hypothyroidism in patients affected by chronic heart failure: role of amiodarone. Endocr Metab Immune Disord Drug Targets 2012; 12: 86-94.
  • 19.
    https://doi.org/10.2174/187153012799278947.
  • 20.
    PMid:22214334.
  • 21.
    [8] Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid states. ScientificWorldJournal 2012; 2012: 741861.
  • 22.
    https://doi.org/10.1100/2012/741861.
  • 23.
    PMid:22649319 PMCid:PMC3354657.
  • 24.
    [9] Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Curr D. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm 2016; 2016: 6757154.
  • 25.
    https://doi.org/10.1155/2016/6757154.
  • 26.
    PMid:27051079 PMCid:PMC4802023.
  • 27.
    [10] Fernandes R, Dreher G, Schenkel P, Fernandes T, Ribeiro M, Araujo A, BellKlein A. Redox status and prosurvival/proapoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011; 29: 617-623.
  • 28.
    https://doi.org/10.1002/cbf.1796.
  • 29.
    PMid:21989893.
  • 30.
    [11] Bergh JJ, Lin H-Y, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin V3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146: 2864-2871.
  • 31.
    https://doi.org/10.1210/en.2005-0102.
  • 32.
    PMid:15802494.
  • 33.
    [12] Crespo-Sanjun J, Zamora-Gonzalez N, Calvo-Nieves MD, Andres-Ledesma C. Apolipoprotein D. Advances in Lipoprotein Research 2017: 25.
  • 34.
    https://doi.org/10.5772/66626.
  • 35.
    [13] Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35: 1632-1642.
  • 36.
    https://doi.org/10.1016/j.neurobiolaging.2014.01.148.
  • 37.
    PMid:24612673 PMCid:PMC3988949.
  • 38.
    [14] Martnez-Pinilla E, Navarro A, Ordez C, del Valle E, Tolivia J. Apolipoprotein D subcellular distribution pattern in neuronal cells during oxidative stress. Acta Histochemica 2015; 117: 536-544.
  • 39.
    https://doi.org/10.1016/j.acthis.2015.04.003.
  • 40.
    PMid:25953740.
  • 41.
    [15] Zhou Y, Wang L, Li R, Liu M, Li X, Su H, et al. Secreted glycoprotein BmApoD1 plays a critical role in anti-oxidation and anti-apoptosis in Bombyx mori. Biochem Biophys Res Commun 2018; 495: 839-845.
  • 42.
    https://doi.org/10.1016/j.bbrc.2017.11.044.
  • 43.
    PMid:29128356.
  • 44.
    [16] Bhatia S, Knoch B, Wong J, Kim WS, Else PL, Oakley AJ, Garner B. Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochem J 2012; 442: 713-721.
  • 45.
    https://doi.org/10.1042/BJ20111166.
  • 46.
    PMid:22150111.
  • 47.
    [17] Leung WC, Lawrie A, Demaries S, Massaeli H, Burry A, Yablonsky S, et al. Apolipoprotein D and platelet-derived growth factor-BB synergism mediates vascular smooth muscle cell migration. Circ Res 2004; 95: 179-186.
  • 48.
    https://doi.org/10.1161/01.RES.0000135482.74178.14.
  • 49.
    PMid:15192024.
  • 50.
    [18] Tsukamoto K, Mani D, Shi J, Zhang S, Haagensen DE, Otsuka F, et al. Identification of apolipoprotein D as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci U S A 2013; 110: 17023-17028.
  • 51.
    https://doi.org/10.1073/pnas.1315986110.
  • 52.
    PMid:24082102 PMCid:PMC3801016.
  • 53.
    [19] Salami M, Bandegi AR, Sameni HR, Vafaei AA, Pakdel A. Hippocampal up-regulation of apolipoprotein D in a rat model of maternal hypo-and hyperthyroidism: implication of oxidative stress. Neurochem Res 2019; 44: 2190-2201.
  • 54.
    https://doi.org/10.1007/s11064-019-02859-5.
  • 55.
    PMid:31414343.
  • 56.
    [20] Martnez E, Navarro A, Ordnez C, del Valle E, Tolivia J. Oxidative stress induces apolipoprotein D overexpression in hippocampus during aging and Alzheimer's disease. J Alzheimers Dis 2013; 36: 129-144.
  • 57.
    https://doi.org/10.3233/JAD-130215.
  • 58.
    PMid:23568103.
  • 59.
    [21] Pascua Maestro R, Gonzlez E, Lillo C, Ganfornina MD, Falcon-Perez JM, Sanchez D. Extracellular vesicles secreted by astroglial cells transport Apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front Cell Neurosci 2018; 12: 526.
  • 60.
    https://doi.org/10.3389/fncel.2018.00526.
  • 61.
    PMid:30687015 PMCid:PMC6335244.
  • 62.
    [22] Messarah M, Saoudi M, Boumendjel A, Boulakoud MS, El Feki A. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ Toxicol Pharmacol 2011; 31: 33-41.
  • 63.
    https://doi.org/10.1016/j.etap.2010.09.003.
  • 64.
    PMid:21787667.
  • 65.
    [23] Oakley AJ, Bhatia S, Ecroyd H, Garner B. Molecular dynamics analysis of apolipoprotein-D-lipid hydroperoxide interactions: mechanism for selective oxidation of Met-93. PloS One 2012; 7: e34057.
  • 66.
    https://doi.org/10.1371/journal.pone.0034057.
  • 67.
    PMid:22479522 PMCid:PMC3316614.
  • 68.
    [24] Yao X, Sa R, Ye C, Zhang D, Zhang S, Xia H, et al. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: a targeted metabolomic approach. Prostaglandins Other Lipid Mediat 2015; 118: 11-18.
  • 69.
    https://doi.org/10.1016/j.prostaglandins.2015.03.005.
  • 70.
    PMid:25841349.
  • 71.
    [25] Do Carmo S, Levros Jr L-C, Rassart E. Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta 2007; 1773: 954-969.
  • 72.
    https://doi.org/10.1016/j.bbamcr.2007.03.007.
  • 73.
    PMid:17477983.
  • 74.
    [26] Do Carmo S, Sguin D, Milne R, Rassart E. Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 2002; 277: 5514-5523.
  • 75.
    https://doi.org/10.1074/jbc.M105057200.
  • 76.
    PMid:11711530.
  • 77.
    [1] Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH. Effects of thyroid hormones on the heart. Clin Investig Arterioscler 2014; 26: 296-309.
  • 78.
    https://doi.org/10.1016/j.arteri.2014.07.003.
  • 79.
    PMid:25438971.
  • 80.
    [2] De K, Ghosh G, Datta M, Konar A, Bandyopadhyay J, Bandyopadhyay D, Bhattacharya S, Bandyopadhyay A. Analysis of differentially expressed genes in hyperthyroid-induced hypertrophied heart by cDNA microarray. J Endocrinol 2004; 182: 303-314.
  • 81.
    https://doi.org/10.1677/joe.0.1820303.
  • 82.
    PMid:15283691.
  • 83.
    [3] Klein I, Danzi S. Thyroid disease and the heart. Circulation 2007; 116: 1725-1735.
  • 84.
    https://doi.org/10.1161/CIRCULATIONAHA.106.678326.
  • 85.
    PMid:17923583.
  • 86.
    [4] Stanciu AE, ZamfirChiruAnton A, Stanciu MM, Gheorghe DC. Impact of thyroid disease on heart failure. the role of the clinical cardiac electrophysiologist in the management of congestive heart failure 2017; 141.
  • 87.
    https://doi.org/10.5772/66283.
  • 88.
    [5] Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxid Med Cell Longev 2015; 2015: 854265.
  • 89.
    https://doi.org/10.1155/2015/854265.
  • 90.
    PMid:26146529 PMCid:PMC4471379.
  • 91.
    [6] Sabih DE, Inayatullah M. Managing thyroid dysfunction in selected special situations. Thyroid Res 2013; 6: 2.
  • 92.
    https://doi.org/10.1186/1756-6614-6-2.
  • 93.
    PMid:23379325 PMCid:PMC3626556.
  • 94.
    [7] Triggiani V, Iacoviello M, Monzani F, Puzzovivo A, Guida P, Forleo C, et al. Incidence and prevalence of hypothyroidism in patients affected by chronic heart failure: role of amiodarone. Endocr Metab Immune Disord Drug Targets 2012; 12: 86-94.
  • 95.
    https://doi.org/10.2174/187153012799278947.
  • 96.
    PMid:22214334.
  • 97.
    [8] Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid states. ScientificWorldJournal 2012; 2012: 741861.
  • 98.
    https://doi.org/10.1100/2012/741861.
  • 99.
    PMid:22649319 PMCid:PMC3354657.
  • 100.
    [9] Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Curr D. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm 2016; 2016: 6757154.
  • 101.
    https://doi.org/10.1155/2016/6757154.
  • 102.
    PMid:27051079 PMCid:PMC4802023.
  • 103.
    [10] Fernandes R, Dreher G, Schenkel P, Fernandes T, Ribeiro M, Araujo A, BellKlein A. Redox status and prosurvival/proapoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011; 29: 617-623.
  • 104.
    https://doi.org/10.1002/cbf.1796.
  • 105.
    PMid:21989893.
  • 106.
    [11] Bergh JJ, Lin H-Y, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin V3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146: 2864-2871.
  • 107.
    https://doi.org/10.1210/en.2005-0102.
  • 108.
    PMid:15802494.
  • 109.
    [12] Crespo-Sanjun J, Zamora-Gonzalez N, Calvo-Nieves MD, Andres-Ledesma C. Apolipoprotein D. Advances in Lipoprotein Research 2017: 25.
  • 110.
    https://doi.org/10.5772/66626.
  • 111.
    [13] Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35: 1632-1642.
  • 112.
    https://doi.org/10.1016/j.neurobiolaging.2014.01.148.
  • 113.
    PMid:24612673 PMCid:PMC3988949.
  • 114.
    [14] Martnez-Pinilla E, Navarro A, Ordez C, del Valle E, Tolivia J. Apolipoprotein D subcellular distribution pattern in neuronal cells during oxidative stress. Acta Histochemica 2015; 117: 536-544.
  • 115.
    https://doi.org/10.1016/j.acthis.2015.04.003.
  • 116.
    PMid:25953740.
  • 117.
    [15] Zhou Y, Wang L, Li R, Liu M, Li X, Su H, et al. Secreted glycoprotein BmApoD1 plays a critical role in anti-oxidation and anti-apoptosis in Bombyx mori. Biochem Biophys Res Commun 2018; 495: 839-845.
  • 118.
    https://doi.org/10.1016/j.bbrc.2017.11.044.
  • 119.
    PMid:29128356.
  • 120.
    [16] Bhatia S, Knoch B, Wong J, Kim WS, Else PL, Oakley AJ, Garner B. Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochem J 2012; 442: 713-721.
  • 121.
    https://doi.org/10.1042/BJ20111166.
  • 122.
    PMid:22150111.
  • 123.
    [17] Leung WC, Lawrie A, Demaries S, Massaeli H, Burry A, Yablonsky S, et al. Apolipoprotein D and platelet-derived growth factor-BB synergism mediates vascular smooth muscle cell migration. Circ Res 2004; 95: 179-186.
  • 124.
    https://doi.org/10.1161/01.RES.0000135482.74178.14.
  • 125.
    PMid:15192024.
  • 126.
    [18] Tsukamoto K, Mani D, Shi J, Zhang S, Haagensen DE, Otsuka F, et al. Identification of apolipoprotein D as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci U S A 2013; 110: 17023-17028.
  • 127.
    https://doi.org/10.1073/pnas.1315986110.
  • 128.
    PMid:24082102 PMCid:PMC3801016.
  • 129.
    [19] Salami M, Bandegi AR, Sameni HR, Vafaei AA, Pakdel A. Hippocampal up-regulation of apolipoprotein D in a rat model of maternal hypo-and hyperthyroidism: implication of oxidative stress. Neurochem Res 2019; 44: 2190-2201.
  • 130.
    https://doi.org/10.1007/s11064-019-02859-5.
  • 131.
    PMid:31414343.
  • 132.
    [20] Martnez E, Navarro A, Ordnez C, del Valle E, Tolivia J. Oxidative stress induces apolipoprotein D overexpression in hippocampus during aging and Alzheimer's disease. J Alzheimers Dis 2013; 36: 129-144.
  • 133.
    https://doi.org/10.3233/JAD-130215.
  • 134.
    PMid:23568103.
  • 135.
    [21] Pascua Maestro R, Gonzlez E, Lillo C, Ganfornina MD, Falcon-Perez JM, Sanchez D. Extracellular vesicles secreted by astroglial cells transport Apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front Cell Neurosci 2018; 12: 526.
  • 136.
    https://doi.org/10.3389/fncel.2018.00526.
  • 137.
    PMid:30687015 PMCid:PMC6335244.
  • 138.
    [22] Messarah M, Saoudi M, Boumendjel A, Boulakoud MS, El Feki A. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ Toxicol Pharmacol 2011; 31: 33-41.
  • 139.
    https://doi.org/10.1016/j.etap.2010.09.003.
  • 140.
    PMid:21787667.
  • 141.
    [23] Oakley AJ, Bhatia S, Ecroyd H, Garner B. Molecular dynamics analysis of apolipoprotein-D-lipid hydroperoxide interactions: mechanism for selective oxidation of Met-93. PloS One 2012; 7: e34057.
  • 142.
    https://doi.org/10.1371/journal.pone.0034057.
  • 143.
    PMid:22479522 PMCid:PMC3316614.
  • 144.
    [24] Yao X, Sa R, Ye C, Zhang D, Zhang S, Xia H, et al. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: a targeted metabolomic approach. Prostaglandins Other Lipid Mediat 2015; 118: 11-18.
  • 145.
    https://doi.org/10.1016/j.prostaglandins.2015.03.005.
  • 146.
    PMid:25841349.
  • 147.
    [25] Do Carmo S, Levros Jr L-C, Rassart E. Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta 2007; 1773: 954-969.
  • 148.
    https://doi.org/10.1016/j.bbamcr.2007.03.007.
  • 149.
    PMid:17477983.
  • 150.
    [26] Do Carmo S, Sguin D, Milne R, Rassart E. Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 2002; 277: 5514-5523.
  • 151.
    https://doi.org/10.1074/jbc.M105057200.
  • 152.
    PMid:11711530.
comments

Leave a comment here

Share on
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles