Antidepressant- and anxiolytic-like effects of methanolic extract of Salvia spinosa L. in mice

authors:

avatar Zahra kuzegar , avatar Fatemeh Yousefbeyk , avatar Bahram Soltani , avatar Azadeh Motavallian , *


How To Cite kuzegar Z, Yousefbeyk F, Soltani B , Motavallian A. Antidepressant- and anxiolytic-like effects of methanolic extract of Salvia spinosa L. in mice. koomesh. 2021;23(3):e149962. 

Abstract

Introduction: Development of new medicines with fewer adverse effects and more efficacies is needed for the treatment of psychiatric disorders. The present study aimed to investigate the putative antidepressant and anxiolytic effects of methanolic extract of Salvia spinosa L. (SS) in mice. Materials and Methods: Elevated plus-maze (EPM) and open field tests (OFT) were conducted to evaluate anti-anxiety and locomotor activity of animals treated with the methanolic extract of SS [12.5, 25, 50, and 100 mg/kg, intraperitoneal (IP)], respectively. Antidepressant-like activity of the extract was evaluated using forced swim test (FST) and tail suspension test (TST). Total phenol and flavonoid contents were measured using spectrophotometric methods. Results: IP administration of SS (25, 50, and 100 mg/kg) significantly increased the percentage of time spent and the percentage of arm entries into the open arms of EPM and decreased locomotor activity (100 mg/kg), compared with the control group. Furthermore, the immobility time of animals significantly decreased in both FST and TST with doses of 25, 50, and 100 mg/kg of the extract, as compared to the control group. The total phenolic content of methanolic extract was 55.17 mg of gallic acid equivalents (GAE) per gram of dry extract and total flavonoid content was 53.07 mg of quercetin as equivalents (QE)/ g of extract. Conclusion: Salvia spinosa L. has antidepressant- and anxiolytic-like effects in animal models of psychiatric disorders.  

References

  • 1.

    [1] Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 2002; 4: 7.

  • 2.

    https://doi.org/10.31887/DCNS.2002.4.1/bbondy.

  • 3.

    PMid:22033824 PMCid:PMC3181668.

  • 4.

    [2] Wang J, Wu X, Lai W, Long E, Zhang X, Li W, et al. Prevalence of depression and depressive symptoms among outpatients: a systematic review and meta-analysis. BMJ Open 2017; 7: e017173.

  • 5.

    https://doi.org/10.1136/bmjopen-2017-017173.

  • 6.

    PMid:28838903 PMCid:PMC5640125.

  • 7.

    [3] Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS 2013; 25: 191-192.

  • 8.

    [4] Burijon BN. Biological bases of clinical anxiety: WW Norton & Co; 2007.

  • 9.

    [5] Cummings CM, Caporino NE, Kendall PC. Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull 2014; 140: 816-845.

  • 10.

    https://doi.org/10.1037/a0034733.

  • 11.

    PMid:24219155 PMCid:PMC4006306.

  • 12.

    [6] Bschor T, Kilarski LL. Are antidepressants effective? A debate on their efficacy for the treatment of major depression in adults. Expert Rev Neurother 2016; 16: 367-374.

  • 13.

    https://doi.org/10.1586/14737175.2016.1155985.

  • 14.

    PMid:26891111.

  • 15.

    [7] Katzung BG. Basic and clinical pharmacology: Mc Graw Hill; 2012.

  • 16.

    [8] Harvey AL. Natural products in drug discovery. Drug Discover Today 2008; 13: 894-901.

  • 17.

    https://doi.org/10.1016/j.drudis.2008.07.004.

  • 18.

    PMid:18691670.

  • 19.

    [9] Jash SK, Gorai D, Roy R. Salvia genus and triterpenoids. Int J Pharmace Sci Res 2016; 7: 4710.

  • 20.

    [10] Khatamzaz M. Flora of Iran, Research Institute of Forests and Rangelands. Famil Boraginac 2002; 504.

  • 21.

    [11] Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006; 20: 427-437.

  • 22.

    https://doi.org/10.1002/ptr.1898.

  • 23.

    PMid:16619340.

  • 24.

    [12] Kamatou GP, Makunga N, Ramogola W, Viljoen AM. South African Salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol 2008; 119: 664-672.

  • 25.

    https://doi.org/10.1016/j.jep.2008.06.030.

  • 26.

    PMid:18640254.

  • 27.

    [13] Salehi S, Golparvar AR, Hadipanah A. Identification of the chemical components of (Salvia spinosa L.) in Isfahan climatic conditions. 2014. (Persian).

  • 28.

    [14] Federica C, Cristina N, Anna C, Nunziatina D, Antoonella L, Lucia M. In vitro binding studies of methanolic extracts from different Salvia species. Pharmacol Young Res 2006; 1: 1-10.

  • 29.

    [15] Kintzios SE. Sage: the genus Salvia: CRC Press; 2000.

  • 30.

    https://doi.org/10.1201/9780203304556.

  • 31.

    [16] Flamini G, Cioni PL, Morelli I, Bader A. Essential oils of the aerial parts of three Salvia species from Jordan: Salvia lanigera, S. spinosa and S. syriaca. Food Chem 2007; 100: 732-735.

  • 32.

    https://doi.org/10.1016/j.foodchem.2005.10.032.

  • 33.

    [17] Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J Tradit Complement Med 2014; 4: 82-88.

  • 34.

    https://doi.org/10.4103/2225-4110.130373.

  • 35.

    PMid:24860730 PMCid:PMC4003706.

  • 36.

    [18] Walker JB, Sytsma KJ. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 2007; 100: 375-391.

  • 37.

    https://doi.org/10.1093/aob/mcl176.

  • 38.

    PMid:16926227 PMCid:PMC2735309.

  • 39.

    [19] Lu Y, Foo LY. Polyphenolics of Salvia-a review. Phytochemistry 2002; 59: 117-140.

  • 40.

    https://doi.org/10.1016/S0031-9422(01)00415-0.

  • 41.

    [20] Bahadori MB, Valizadeh H, Asghari B, Dinparast L, Farimani MM, Bahadori S. Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. J Funct Foods 2015; 18: 727-736.

  • 42.

    https://doi.org/10.1016/j.jff.2015.09.011.

  • 43.

    [21] Herrera-Ruiz M, Garca-Beltrn Y, Mora S, Daz-Vliz G, Viana GS, Tortoriello J, et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol 2006; 107: 53-58.

  • 44.

    https://doi.org/10.1016/j.jep.2006.02.003.

  • 45.

    PMid:16530995.

  • 46.

    [22] Begashaw B, Mishra B, Tsegaw A, Shewamene Z. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complement Altern Med 2017; 17: 337.

  • 47.

    https://doi.org/10.1186/s12906-017-1841-x.

  • 48.

    PMid:28651570 PMCid:PMC5485746.

  • 49.

    [23] Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem 1927; 73: 627-650.

  • 50.

    https://doi.org/10.1016/S0021-9258(18)84277-6.

  • 51.

    [24] Miliauskas G, Venskutonis P, Van Beek T. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004; 85: 231-237.

  • 52.

    https://doi.org/10.1016/j.foodchem.2003.05.007.

  • 53.

    [25] Kremer D, Joze Kosir I, Kosalec I, Zovko Koncic M, Potocnik T, Cerenak A, et al. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L.(Lamiaceae). Curr Drug Targets 2013; 14: 1006-1014.

  • 54.

    https://doi.org/10.2174/1389450111314090009.

  • 55.

    PMid:23597042.

  • 56.

    [26] Sohrabi R, Pazgoohan N, Seresht HR, Amin B. Repeated systemic administration of the cinnamon essential oil possesses anti-anxiety and anti-depressant activities in mice. Iran J Basic Med Sci 2017; 20: 708-714.

  • 57.

    [27] Kadali SR, Das M, Srinivasa Rao A. Antidepressant activity of brahmi in albino mice. J Clin Diagn Res 2014; 8: 35-37.

  • 58.

    https://doi.org/10.7860/JCDR/2014/7482.4098.

  • 59.

    PMid:24783074 PMCid:PMC4003678.

  • 60.

    [28] Samkhaniani E, Nodehei D, Salem F, Zarghami MH, Khosravi M, Hatef B, et al. NMDA glutamate receptor inhibition in the dorsal hippocampus reduced the maintenance of electric foot shock stress -induced anxiety and depression like behaviors in mice. Koomesh 2019; 21: 716-725. (Persian).

  • 61.

    [29] Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29: 571-625.

  • 62.

    https://doi.org/10.1016/j.neubiorev.2005.03.009.

  • 63.

    PMid:15890404.

  • 64.

    [30] Rashidy-Pour A, Vafaei AA, Mokhtari-Zaer A, Miladi-Gorji H. Physical activity alleviates anxiety but not hippocampal BDNF deficits in morphine abstinent rats. Koomesh 2018; 20: 594-602.

  • 65.

    [31] Hegmann J, DeFries J. Open-field behavior in mice: Genetic analysis of repeated measures. Psychonomic Sci 1968; 13: 27-28.

  • 66.

    https://doi.org/10.3758/BF03342392.

  • 67.

    [32] Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 1986; 24: 525-529.

  • 68.

    https://doi.org/10.1016/0091-3057(86)90552-6.

  • 69.

    [33] Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 1988; 94: 147-160.

  • 70.

    https://doi.org/10.1007/BF00176837.

  • 71.

    PMid:3127840.

  • 72.

    [34] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 1995; 121: 66-72.

  • 73.

    https://doi.org/10.1007/BF02245592.

  • 74.

    PMid:8539342.

  • 75.

    [35] Porsolt R, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327.

  • 76.

    [36] Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 1985; 85: 367-370.

  • 77.

    https://doi.org/10.1007/BF00428203.

  • 78.

    PMid:3923523.

  • 79.

    [37] Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 2012; 7: 1009-1014.

  • 80.

    https://doi.org/10.1038/nprot.2012.044.

  • 81.

    PMid:22555240.

  • 82.

    [38] Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003; 463: 3-33.

  • 83.

    https://doi.org/10.1016/S0014-2999(03)01272-X.

  • 84.

    [39] Motaghi S, Teimouri M. Investigation of anxiolytic and hypnotic effects of aqueous and hydroalcoholic extracts of salvia officinalis in adult mice. Iran J Physiol Pharmacol 2018; 2: 151-144. (Persian).

  • 85.

    [40] Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R. Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci 2015; 26: 699-719.

  • 86.

    https://doi.org/10.1515/revneuro-2015-0009.

  • 87.

    PMid:26146123.

  • 88.

    [41] Hashemi SF, Namjou A, GHasemi PA, Lorigooini Z, Rafieian KM, GHolami AM. Antidepressant-like effect of Lavandula angustifolia Mill and Citrus aurantium Duh essential oils with forced swimming test in reserpinized mice balb/c. 2017. (Persian).

  • 89.

    [42] Naderi N, Akhavan N, Ahari FA, Zamani N, Kamalinejad M, Shokrzadeh M, et al. Effects of hydroalcoholic extract from Salvia verticillata on pharmacological models of seizure, anxiety and depression in mice. Iran J Pharm Res 2011; 10: 535-545.

  • 90.

    [43] Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 2003; 6: 391-395.

  • 91.

    https://doi.org/10.1089/109662003772519976.

  • 92.

    PMid:14977450.

  • 93.

    [44] Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Medica 2003; 69: 113-117.

  • 94.

    https://doi.org/10.1055/s-2003-37712.

  • 95.

    PMid:12624814.

  • 96.

    [45] Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 2008; 69: 4-7.

  • 97.

    [46] Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord 2011; 130: 343-357.

  • 98.

    https://doi.org/10.1016/j.jad.2010.06.010.

  • 99.

    PMid:20579741.

  • 100.

    [47] Zheng M, Fan Y, Shi D, Liu C. Antidepressant-like effect of flavonoids extracted from Apocynum venetum leaves on brain monoamine levels and dopaminergic system. J Ethnopharmacol 2013; 147: 108-113.

  • 101.

    https://doi.org/10.1016/j.jep.2013.02.015.

  • 102.

    PMid:23453939.

  • 103.

    [48] Abbasi-Maleki S, Bakhtiarian A, Nikoui V. Involvement of the monoaminergic system in the antidepressant-like effect of the crude extract of Mentha piperita (Lamiaceae) in the forced swimming test in mice. Synergy 2017; 5: 21-28.

  • 104.

    https://doi.org/10.1016/j.synres.2017.08.002.

  • 105.

    [49] Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193-200.

  • 106.

    https://doi.org/10.1001/archpsyc.64.2.193.

  • 107.

    PMid:17283286.

  • 108.

    [50] Leung JW, Xue H. GABAergic functions and depression: from classical therapies to herbal medicine. Curr Drug Targets CNS Neurol Disord 2003; 2: 363-373.

  • 109.

    https://doi.org/10.2174/1568007033482715.

  • 110.

    PMid:14683464.

  • 111.

    [51] Feng J, Cai X, Zhao J, Yan Z. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neuroscience 2001; 21: 6502-6511.

  • 112.

    https://doi.org/10.1523/JNEUROSCI.21-17-06502.2001.

  • 113.

    PMCid:PMC6763081.

  • 114.

    [52] Hanrahan JR, Chebib M, Johnston GA. Interactions of flavonoids with ionotropic GABA receptors. Adv Pharmacol (San Diego, Calif). 2015; 72: 189-200.

  • 115.

    https://doi.org/10.1016/bs.apha.2014.10.007.

  • 116.

    PMid:25600371.

  • 117.

    [1] Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 2002; 4: 7.

  • 118.

    https://doi.org/10.31887/DCNS.2002.4.1/bbondy.

  • 119.

    PMid:22033824 PMCid:PMC3181668.

  • 120.

    [2] Wang J, Wu X, Lai W, Long E, Zhang X, Li W, et al. Prevalence of depression and depressive symptoms among outpatients: a systematic review and meta-analysis. BMJ Open 2017; 7: e017173.

  • 121.

    https://doi.org/10.1136/bmjopen-2017-017173.

  • 122.

    PMid:28838903 PMCid:PMC5640125.

  • 123.

    [3] Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS 2013; 25: 191-192.

  • 124.

    [4] Burijon BN. Biological bases of clinical anxiety: WW Norton & Co; 2007.

  • 125.

    [5] Cummings CM, Caporino NE, Kendall PC. Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull 2014; 140: 816-845.

  • 126.

    https://doi.org/10.1037/a0034733.

  • 127.

    PMid:24219155 PMCid:PMC4006306.

  • 128.

    [6] Bschor T, Kilarski LL. Are antidepressants effective? A debate on their efficacy for the treatment of major depression in adults. Expert Rev Neurother 2016; 16: 367-374.

  • 129.

    https://doi.org/10.1586/14737175.2016.1155985.

  • 130.

    PMid:26891111.

  • 131.

    [7] Katzung BG. Basic and clinical pharmacology: Mc Graw Hill; 2012.

  • 132.

    [8] Harvey AL. Natural products in drug discovery. Drug Discover Today 2008; 13: 894-901.

  • 133.

    https://doi.org/10.1016/j.drudis.2008.07.004.

  • 134.

    PMid:18691670.

  • 135.

    [9] Jash SK, Gorai D, Roy R. Salvia genus and triterpenoids. Int J Pharmace Sci Res 2016; 7: 4710.

  • 136.

    [10] Khatamzaz M. Flora of Iran, Research Institute of Forests and Rangelands. Famil Boraginac 2002; 504.

  • 137.

    [11] Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006; 20: 427-437.

  • 138.

    https://doi.org/10.1002/ptr.1898.

  • 139.

    PMid:16619340.

  • 140.

    [12] Kamatou GP, Makunga N, Ramogola W, Viljoen AM. South African Salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol 2008; 119: 664-672.

  • 141.

    https://doi.org/10.1016/j.jep.2008.06.030.

  • 142.

    PMid:18640254.

  • 143.

    [13] Salehi S, Golparvar AR, Hadipanah A. Identification of the chemical components of (Salvia spinosa L.) in Isfahan climatic conditions. 2014. (Persian).

  • 144.

    [14] Federica C, Cristina N, Anna C, Nunziatina D, Antoonella L, Lucia M. In vitro binding studies of methanolic extracts from different Salvia species. Pharmacol Young Res 2006; 1: 1-10.

  • 145.

    [15] Kintzios SE. Sage: the genus Salvia: CRC Press; 2000.

  • 146.

    https://doi.org/10.1201/9780203304556.

  • 147.

    [16] Flamini G, Cioni PL, Morelli I, Bader A. Essential oils of the aerial parts of three Salvia species from Jordan: Salvia lanigera, S. spinosa and S. syriaca. Food Chem 2007; 100: 732-735.

  • 148.

    https://doi.org/10.1016/j.foodchem.2005.10.032.

  • 149.

    [17] Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J Tradit Complement Med 2014; 4: 82-88.

  • 150.

    https://doi.org/10.4103/2225-4110.130373.

  • 151.

    PMid:24860730 PMCid:PMC4003706.

  • 152.

    [18] Walker JB, Sytsma KJ. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 2007; 100: 375-391.

  • 153.

    https://doi.org/10.1093/aob/mcl176.

  • 154.

    PMid:16926227 PMCid:PMC2735309.

  • 155.

    [19] Lu Y, Foo LY. Polyphenolics of Salvia-a review. Phytochemistry 2002; 59: 117-140.

  • 156.

    https://doi.org/10.1016/S0031-9422(01)00415-0.

  • 157.

    [20] Bahadori MB, Valizadeh H, Asghari B, Dinparast L, Farimani MM, Bahadori S. Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. J Funct Foods 2015; 18: 727-736.

  • 158.

    https://doi.org/10.1016/j.jff.2015.09.011.

  • 159.

    [21] Herrera-Ruiz M, Garca-Beltrn Y, Mora S, Daz-Vliz G, Viana GS, Tortoriello J, et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol 2006; 107: 53-58.

  • 160.

    https://doi.org/10.1016/j.jep.2006.02.003.

  • 161.

    PMid:16530995.

  • 162.

    [22] Begashaw B, Mishra B, Tsegaw A, Shewamene Z. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complement Altern Med 2017; 17: 337.

  • 163.

    https://doi.org/10.1186/s12906-017-1841-x.

  • 164.

    PMid:28651570 PMCid:PMC5485746.

  • 165.

    [23] Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem 1927; 73: 627-650.

  • 166.

    https://doi.org/10.1016/S0021-9258(18)84277-6.

  • 167.

    [24] Miliauskas G, Venskutonis P, Van Beek T. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004; 85: 231-237.

  • 168.

    https://doi.org/10.1016/j.foodchem.2003.05.007.

  • 169.

    [25] Kremer D, Joze Kosir I, Kosalec I, Zovko Koncic M, Potocnik T, Cerenak A, et al. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L.(Lamiaceae). Curr Drug Targets 2013; 14: 1006-1014.

  • 170.

    https://doi.org/10.2174/1389450111314090009.

  • 171.

    PMid:23597042.

  • 172.

    [26] Sohrabi R, Pazgoohan N, Seresht HR, Amin B. Repeated systemic administration of the cinnamon essential oil possesses anti-anxiety and anti-depressant activities in mice. Iran J Basic Med Sci 2017; 20: 708-714.

  • 173.

    [27] Kadali SR, Das M, Srinivasa Rao A. Antidepressant activity of brahmi in albino mice. J Clin Diagn Res 2014; 8: 35-37.

  • 174.

    https://doi.org/10.7860/JCDR/2014/7482.4098.

  • 175.

    PMid:24783074 PMCid:PMC4003678.

  • 176.

    [28] Samkhaniani E, Nodehei D, Salem F, Zarghami MH, Khosravi M, Hatef B, et al. NMDA glutamate receptor inhibition in the dorsal hippocampus reduced the maintenance of electric foot shock stress -induced anxiety and depression like behaviors in mice. Koomesh 2019; 21: 716-725. (Persian).

  • 177.

    [29] Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29: 571-625.

  • 178.

    https://doi.org/10.1016/j.neubiorev.2005.03.009.

  • 179.

    PMid:15890404.

  • 180.

    [30] Rashidy-Pour A, Vafaei AA, Mokhtari-Zaer A, Miladi-Gorji H. Physical activity alleviates anxiety but not hippocampal BDNF deficits in morphine abstinent rats. Koomesh 2018; 20: 594-602.

  • 181.

    [31] Hegmann J, DeFries J. Open-field behavior in mice: Genetic analysis of repeated measures. Psychonomic Sci 1968; 13: 27-28.

  • 182.

    https://doi.org/10.3758/BF03342392.

  • 183.

    [32] Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 1986; 24: 525-529.

  • 184.

    https://doi.org/10.1016/0091-3057(86)90552-6.

  • 185.

    [33] Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 1988; 94: 147-160.

  • 186.

    https://doi.org/10.1007/BF00176837.

  • 187.

    PMid:3127840.

  • 188.

    [34] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 1995; 121: 66-72.

  • 189.

    https://doi.org/10.1007/BF02245592.

  • 190.

    PMid:8539342.

  • 191.

    [35] Porsolt R, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327.

  • 192.

    [36] Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 1985; 85: 367-370.

  • 193.

    https://doi.org/10.1007/BF00428203.

  • 194.

    PMid:3923523.

  • 195.

    [37] Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 2012; 7: 1009-1014.

  • 196.

    https://doi.org/10.1038/nprot.2012.044.

  • 197.

    PMid:22555240.

  • 198.

    [38] Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003; 463: 3-33.

  • 199.

    https://doi.org/10.1016/S0014-2999(03)01272-X.

  • 200.

    [39] Motaghi S, Teimouri M. Investigation of anxiolytic and hypnotic effects of aqueous and hydroalcoholic extracts of salvia officinalis in adult mice. Iran J Physiol Pharmacol 2018; 2: 151-144. (Persian).

  • 201.

    [40] Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R. Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci 2015; 26: 699-719.

  • 202.

    https://doi.org/10.1515/revneuro-2015-0009.

  • 203.

    PMid:26146123.

  • 204.

    [41] Hashemi SF, Namjou A, GHasemi PA, Lorigooini Z, Rafieian KM, GHolami AM. Antidepressant-like effect of Lavandula angustifolia Mill and Citrus aurantium Duh essential oils with forced swimming test in reserpinized mice balb/c. 2017. (Persian).

  • 205.

    [42] Naderi N, Akhavan N, Ahari FA, Zamani N, Kamalinejad M, Shokrzadeh M, et al. Effects of hydroalcoholic extract from Salvia verticillata on pharmacological models of seizure, anxiety and depression in mice. Iran J Pharm Res 2011; 10: 535-545.

  • 206.

    [43] Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 2003; 6: 391-395.

  • 207.

    https://doi.org/10.1089/109662003772519976.

  • 208.

    PMid:14977450.

  • 209.

    [44] Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Medica 2003; 69: 113-117.

  • 210.

    https://doi.org/10.1055/s-2003-37712.

  • 211.

    PMid:12624814.

  • 212.

    [45] Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 2008; 69: 4-7.

  • 213.

    [46] Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord 2011; 130: 343-357.

  • 214.

    https://doi.org/10.1016/j.jad.2010.06.010.

  • 215.

    PMid:20579741.

  • 216.

    [47] Zheng M, Fan Y, Shi D, Liu C. Antidepressant-like effect of flavonoids extracted from Apocynum venetum leaves on brain monoamine levels and dopaminergic system. J Ethnopharmacol 2013; 147: 108-113.

  • 217.

    https://doi.org/10.1016/j.jep.2013.02.015.

  • 218.

    PMid:23453939.

  • 219.

    [48] Abbasi-Maleki S, Bakhtiarian A, Nikoui V. Involvement of the monoaminergic system in the antidepressant-like effect of the crude extract of Mentha piperita (Lamiaceae) in the forced swimming test in mice. Synergy 2017; 5: 21-28.

  • 220.

    https://doi.org/10.1016/j.synres.2017.08.002.

  • 221.

    [49] Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193-200.

  • 222.

    https://doi.org/10.1001/archpsyc.64.2.193.

  • 223.

    PMid:17283286.

  • 224.

    [50] Leung JW, Xue H. GABAergic functions and depression: from classical therapies to herbal medicine. Curr Drug Targets CNS Neurol Disord 2003; 2: 363-373.

  • 225.

    https://doi.org/10.2174/1568007033482715.

  • 226.

    PMid:14683464.

  • 227.

    [51] Feng J, Cai X, Zhao J, Yan Z. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neuroscience 2001; 21: 6502-6511.

  • 228.

    https://doi.org/10.1523/JNEUROSCI.21-17-06502.2001.

  • 229.

    PMCid:PMC6763081.

  • 230.

    [52] Hanrahan JR, Chebib M, Johnston GA. Interactions of flavonoids with ionotropic GABA receptors. Adv Pharmacol (San Diego, Calif). 2015; 72: 189-200.

  • 231.

    https://doi.org/10.1016/bs.apha.2014.10.007.

  • 232.

    PMid:25600371.