Logo
Koomesh

Image Credit:Koomesh

Triage of Patients with COVID-19: Using Ensemble Learning Method for Risk Factor Analysis and Death Prediction

Author(s):
Neda SadatNeda Sadat1, Sharareh R. Niakan KalhoriSharareh R. Niakan Kalhori2, 3,*, Shahrzad DarvishiShahrzad Darvishi4, Jamileh KianiJamileh Kiani1, Farhad AbbasiFarhad Abbasi5, Batool AmiriBatool Amiri1, Erfan JavanmardiErfan JavanmardiErfan Javanmardi ORCID1, Safiyeh DaneshiSafiyeh DaneshiSafiyeh Daneshi ORCID1
1Clinical Research Development Unit, Persian Gulf Martyrs Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
2Department of Health Information Management, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
3PLRI Informatics Research Institute, Medical School Hannover, Technical University of Braunschweig, Braunschweig, Germany
4Imam Khomeini Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
5Department of Infectious Diseases, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

Koomesh:Vol. 26, issue 1; e150060
Published online:Oct 12, 2024
Article type:Research Article
How to Cite:Neda Sadat, Sharareh R. Niakan Kalhori, Shahrzad Darvishi, Jamileh Kiani, Farhad Abbasi, et al. Triage of Patients with COVID-19: Using Ensemble Learning Method for Risk Factor Analysis and Death Prediction.koomesh.2024;26(1):e150060.https://doi.org/10.69107/koomesh-150060.

Abstract

Fulltext

The full text is available in the PDF file.

References

  • 1.
    Organization WH. Coronavirus disease 2019 (‎ COVID-19)‎: situation report, 94. 2020.
  • 2.
    Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. https://doi.org/https://doi.org/10.1001/jamainternmed.2020.0994.
  • 3.
    Hui DS, Azhar EI, Kim Y-J, Memish ZA, Oh M-d, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018;18(8):e217-e27.
  • 4.
    Pardhan S, Vaughan M, Zhang J, Smith L, Chichger H. Sore eyes as the most significant ocular symptom experienced by people with COVID-19: a comparison between pre-COVID-19 and during COVID-19 states. BMJ Open Ophthalmol. 2020;5(1):e000632.
  • 5.
    Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G, et al. Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology. 2020;296(2):E86-E96. https://doi.org/https://doi.org/10.1148/radiol.2020201433.
  • 6.
    Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-6.
  • 7.
    Oran DP, Topol EJ. The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic review. Ann Intern Med. 2021;174(5):655-62.
  • 8.
    Lazzerini M, Putoto G. COVID-19 in Italy: momentous decisions and many uncertainties. Lancet Glob Health. 2020;8(5):e641-e2.
  • 9.
    Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. Jama. 2020;323(16):1545-6. https://doi.org/https://doi.org/10.1001/jama.2020.4031.
  • 10.
    Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey A, et al. Projecting hospital utilization during the COVID-19 outbreaks in the United States. Proc Natl Acad Sci U S A. 2020;117(16):9122-6. https://doi.org/ https://doi.org/10.1073/pnas.2004064117.
  • 11.
    Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.
  • 12.
    Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142.
  • 13.
    Kabir MJ, Heidari A, Moeini S, Khatirnamani Z, Kavian Telouri F, Eimery M. Calculation of Direct Medical Costs and Indirect Costs in Patients with Covid-19 Hospitalized in the Intensive Care Unit in Golestan Province. Manage Strat Health Syst. 2022;6(4):308-16.
  • 14.
    Gao Y, Cai G-Y, Fang W, Li H-Y, Wang S-Y, Chen L, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun. 2020;11(1):1-10.
  • 15.
    Organization WH. Maintaining essential health services: operational guidance for the COVID-19 context: interim guidance, 1 June 2020: World Health Organization; 2020 Contract No.: Document Number|.
  • 16.
    Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PloS one. 2020;15(7):e0236618.
  • 17.
    Hu H, Yao N, Qiu Y. Comparing rapid scoring systems in mortality prediction of critically ill patients with novel coronavirus disease. Acad Emerg Med. 2020;27(6):461-8.
  • 18.
    Shanbehzadeh M, Orooji A, Kazemi-Arpanahi H. Comparing of data mining techniques for predicting in-hospital mortality among patients with covid-19. J Biostat Epidemiol. 2021;7(2):154-73.
  • 19.
    Josephus BO, Nawir AH, Wijaya E, Moniaga JV, Ohyver M. Predict mortality in patients infected with COVID-19 virus based on observed characteristics of the patient using logistic regression. Procedia Comput Sci. 2021;179:871-7.
  • 20.
    Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. China medical treatment expert group for Covid-19. N Engl J Med. 2019;382(18):1708-20.
  • 21.
    Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020;323(20):2052-9.
  • 22.
    Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283-8.
  • 23.
    Malki Z, Atlam E-S, Hassanien AE, Dagnew G, Elhosseini MA, Gad I. Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches. Chaos Solitons Fractals. 2020;138:110137.
  • 24.
    Cho A. AI systems aim to sniff out coronavirus outbreaks. American Association for the Advancement of Science; 2020.
  • 25.
    Xiong Z, Wang R, Bai H, Halsey K, Mei J, Li Y, et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology. 2020;296(3):E156-E65. https://doi.org/https://doi.org/10.1148/radiol.2020201491.
  • 26.
    Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. Eur Respir J. 2020;56(2). https://doi.org/https://doi.org/10.1183/13993003.01104-2020.
  • 27.
    Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. bmj. 2020;369. https://doi.org/https://doi.org/10.1136/bmj.m1328.
  • 28.
    Chowdhury ME, Rahman T, Khandakar A, Al-Madeed S, Zughaier SM, Doi SA, et al. An early warning tool for predicting mortality risk of COVID-19 patients using machine learning. Cognit Comput. 2021:1-16. https://doi.org/https://doi.org/10.1007/s12559-020-09812-7.
  • 29.
    Nemati M, Ansary J, Nemati N. Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns. 2020;1(5):100074. https://doi.org/https://doi.org/10.1016/j.patter.2020.100074.
  • 30.
    Ikemura K, Bellin E, Yagi Y, Billett H, Saada M, Simone K, et al. Using automated machine learning to predict the mortality of patients with COVID-19: Prediction model development study. J Med Internet Res. 2021;23(2):e23458. https://doi.org/https://doi.org/10.2196/23458.
  • 31.
    Patel D, Kher V, Desai B, Lei X, Cen S, Nanda N, et al. Machine learning based predictors for COVID-19 disease severity. Sci Rep. 2021;11(1):1-7. https://doi.org/https://doi.org/10.1038/s41598-021-83967-7.
  • 32.
    Vaid A, Somani S, Russak AJ, De Freitas JK, Chaudhry FF, Paranjpe I, et al. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation. J Med Internet Res. 2020;22(11):e24018. https://doi.org/https://doi.org/10.2196/24018.
  • 33.
    Moulaei K, Shanbehzadeh M, Mohammadi-Taghiabad Z, Kazemi-Arpanahi H. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med Inform Decis Mak. 2022;22(1):1-12.
  • 34.
    Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, et al. A machine learning-based model for survival prediction in patients with severe COVID-19 infection. MedRxiv. 2020.
  • 35.
    Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G, et al. Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19. MedRxiv. 2020.
  • 36.
    Shanbezadeh M, Valinejadi A, Afrah R, Kazemi-Arpanahi H, Orooji A, Kaffashian M. Comparison of machine-learning algorithms efficiency to build a predictive model for mortality risk in COVID-19 hospitalized patients. Faslnamahi Kumish. 2022;24(1):128-38.
  • 37.
    Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;180(8):1081-9. https://doi.org/https://doi.org/10.1001/jamainternmed.2020.2033.
  • 38.
    Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. lancet. 2020;395(10229):1054-62. https://doi.org/https://doi.org/10.1016/S0140-6736(20)30566-3.
  • 39.
    Toussie D, Voutsinas N, Finkelstein M, Cedillo MA, Manna S, Maron SZ, et al. Clinical and chest radiography features determine patient outcomes in young and middle-aged adults with COVID-19. Radiology. 2020;297(1):E197-E206. https://doi.org/https://doi.org/10.1148/radiol.2020201754.
  • 40.
    Karthikeyan A, Garg A, Vinod P, Priyakumar UD. Machine learning based clinical decision support system for early COVID-19 mortality prediction. Front Public Health. 2021;9:626697.
  • 41.
    An C, Lim H, Kim D-W, Chang JH, Choi YJ, Kim SW. Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study. Sci Rep. 2020;10(1):1-11.
  • 42.
    Kuncheva LI. Combining pattern classifiers: methods and algorithms. John Wiley & Sons; 2014.
  • 43.
    Jafari M, Akbari M, Navidkia M, Dashtbin S, Mousavi SF, Heidary M, et al. Comparison of clinical, radiological and laboratory findings in discharged and dead patients with COVID-19. Vacunas. 2022.
  • 44.
    Talebi S, Nematshahi M, Tajabadi A, Khosrogerdi A. Comparison of clinical and epidemiological characteristics of deceased and recovered patients with COVID-19 in Sabzevar, Iran. Journal Mil Med. 2020;22(6):509-16.
  • 45.
    Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
  • 46.
    Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS‐CoV‐2: a systematic review and meta‐analysis. J Med Virol. 2020;92(9):1449-59.
  • 47.
    Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus. 2020;12(3).
  • 48.
    Alipio M, Pregoner JD. Epidemiological Characteristics of An Outbreak of Coronavirus Disease 2019 in the Philippines (April 3, 2020). Available at SSRN 3568934.
  • 49.
    Hooper GL. Health Seeking in Men: A Concept Analysis. Urol Nurs. 2016;36(4).
  • 50.
    Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. lancet. 2020;395(10223):497-506.
  • 51.
    Ki M. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health. 2020;42.
  • 52.
    Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. bmj. 2020;368.
  • 53.
    Liu Y, Mao B, Liang S, Yang J. Association between age and clinical characteristics and outcomes of COVID‐19. Eur Respir J;55(5):2001112. https://doi.org/https://doi.org/10.1183/13993003.01112-2020.
  • 54.
    Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Retraction: cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med. DOI: 10.1056/NEJMoa2007621. Mass Medical Soc; 2020.
  • 55.
    Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature. Am J Infect Control. 2021;49(2):238-46. https://doi.org/https://doi.org/10.1016/j.ajic.2020.06.213.
  • 56.
    Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A tool for early prediction of severe coronavirus disease 2019 (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020;71(15):833-40.
  • 57.
    Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A tool to early predict severe 2019-novel coronavirus pneumonia (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China. MedRxiv. 2020. https://doi.org/ https://doi.org/10.1101/2020.03.17.20037515.
  • 58.
    Estiri H, Strasser ZH, Klann JG, Naseri P, Wagholikar KB, Murphy SN. Predicting COVID-19 mortality with electronic medical records. NPJ Digit Med. 2021;4(1):1-10. https://doi.org/https://doi.org/10.1038/s41746-021-00383-x.
  • 59.
    Podder P, Mondal MRH, editors. Machine Learning to Predict COVID-19 and ICU Requirement. 2020 11th International Conference on Electrical and Computer Engineering (ICECE); 2020. IEEE.
comments

Leave a comment here


Crossmark
Crossmark
Checking
Share on
Cited by
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles