Comparison of parametric and semi-parametric methods for estimation of the parameters in frailty models in order to investigation effective factors in survival of the dental implants placement

authors:

avatar hossein hosseinifard , avatar Ahmad Reza Baghestani , avatar mohammad Jafarian , avatar mohammad Bayat , avatar sayna Shamszadeh , avatar Alireza Akbarzadeh Baghban ORCID , *


How To Cite hosseinifard H, Baghestani A R, Jafarian M, Bayat M, Shamszadeh S, et al. Comparison of parametric and semi-parametric methods for estimation of the parameters in frailty models in order to investigation effective factors in survival of the dental implants placement. koomesh. 2017;19(2):e151090. 

Abstract

Introduction: Frailty models were utilized in survival models to take into account created heterogeneity and dependence between experimental units. Parametric and semi-parametric methods are considered for estimation of parameters in frailty models. In parametric frailty models, to frailty and baseline hazard, a parametric distribution is assumed, while the distribution for baseline hazard function is not considered in semi-parametric methods. Besides, the parameters using EM algorithm or penalized likelihood are estimated in the mentioned methods. The purpose of this study is the comparison of parametric and semi-parametric methods in frailty models. Materials and Methods: Two hundred thirteen of the warfare victims that treated with dental implants during 2000 to 2010 were enrolled in this study. In order to investigation effective factors in survival of the dental implants placement, frailty models are fitted. Parameters are estimated using the three methods, parametric approach, semi- parametric using EM algorithm and Semi parametric using penalized likelihood. Statistical analysis was carried out using Frailtypack package in R software version 3.3.1. Results: Estimation of the semi parametric using penalized likelihood approach is contained a smaller magnitude of AIC as compared to parametric and semi-parametric approach of EM algorithm. Smoking and implant length are significant factors on survival implants (p

References

  • 1.

    David CR. Regression models and life tables (with discussion). J Royal Stat Soc 1972; 34: 187-220.

  • 2.

    Wienke A. Frailty models in survival analysis: CRC Press; 2010.

  • 3.

    Hougaard P. Statistical inference for shared frailty models. Analysis of Multivariate Survival Data: Springer; 2000. p. 263-311.

  • 4.

    Klein JP. Semiparametric estimation of random effects using the Cox model based on the EM algorithm. Biometrics 1992; 48: 795-806.

  • 5.

    Martinussen T, Pipper CB. Estimation in the positive stable shared frailty Cox proportional hazards model. Lifetime Data Anal 2005; 11: 99-115.

  • 6.

    Moger TA, Aalen OO. A distribution for multivariate frailty based on the compound Poisson distribution with random scale. Lifetime Data Anal 2005; 11: 41-59.

  • 7.

    Androulakis E, Koukouvinos C, Vonta F. Estimation and variable selection via frailty models with penalized likelihood. Stat Med 2012; 31: 2223-2239.

  • 8.

    Zarb G, Bolender C, Hickey J. Prosthodontic treatment for edentulous patients, Mosby, St. Louis; 1997.

  • 9.

    Albrektsson T, Lekholm U. Osseointegration: current state of the art. Dent Clin North Am 1989; 33: 537-554.

  • 10.

    Degidi M, Piattelli A. A 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol 2005; 31: 25-31.

  • 11.

    Iezzi G, Degidi M, Scarano A, Perrotti V, Piattelli A. Bone response to submerged, unloaded implants inserted in poor bone sites: a histological and histomorphometrical study of 8 titanium implants retrieved from man. J Oral Implantol 2005; 31: 225-233.

  • 12.

    Lemmerman KJ, Lemmerman NE. Osseointegrated dental implants in private practice: a long-term case series study. J Periodontol 2005; 76: 310-319.

  • 13.

    Rosenberg ES, Cho SC, Elian N, Jalbout ZN, Froum S, Evian CI. A comparison of characteristics of implant failure and survival in periodontally compromised and periodontally healthy patients: a clinical report. Int J Oral Maxillofac Implants 2004; 19: 873-879.

  • 14.

    Tolstunov L. Dental implant success-failure analysis: a concept of implant vulnerability. Implant Dent 2006; 15: 341-346.

  • 15.

    Kourtis SG, Sotiriadou S, Voliotis S, Challas A. Private practice results of dental implants. Part I: survival and evaluation of risk factorsPart II: surgical and prosthetic complications. Implant Dent 2004; 13: 373-385.

  • 16.

    Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 2004; 62: 527-534.

  • 17.

    Ashley ET, Covington LL, Bishop BG, Breault LG. Ailing and failing endosseous dental implants: a literature review. J Contemp Dent Pract 2003; 4: 35-50.

  • 18.

    Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003; 12: 306-317.

  • 19.

    Drago CJ. Rates of osseointegration of dental implants with regard to anatomical location. J Prosthodont 1992; 1: 29-31.

  • 20.

    El Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part I. Implant Dent 1999; 8: 173-185.

  • 21.

    Chuang S, Cai T, Douglass C, Wei L, Dodson T. Frailty approach for the analysis of clustered failure time observations in dental research. J Dent Res 2005; 84: 54-58.

  • 22.

    Chuang S, Tian L, Wei L, Dodson T. Predicting dental implant survival by use of the marginal approach of the semi-parametric survival methods for clustered observations. J Dent Res 2002; 81: 851-855.

  • 23.

    Chuang S-K, Cai T. Predicting clustered dental implant survival using frailty methods. J Dent Res 2006; 85: 1147-1151.

  • 24.

    Wu X, Al-Abedalla K, Eimar H, Arekunnath Madathil S, Abi-Nader S, Daniel NG, et al. Antihypertensive medications and the survival rate of osseointegrated dental implants: a cohort study. Clin Implant Dent Relat Res 2016; 18: 1171-1182.

  • 25.

    Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent. 1989; 62: 567-572.

  • 26.

    Akaike H. A new look at the statistical model identification. IEEE trans Autom Control 1974; 19: 716-723.

  • 27.

    Yu B. Estimation of shared Gamma frailty models by a modified EM algorithm. Computational statistics & data analysis 2006; 50: 463-474.

  • 28.

    Craven P, Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik 1978; 31: 377-403.

  • 29.

    Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001; 96: 1348-1360.

  • 30.

    McDermott NE, Chuang SK, Woo VV, Dodson TB. Complications of dental implants: identification, frequency, and associated risk factors. Int J Oral Maxillofac Implants 2003; 18: 848-855.

  • 31.

    Paquette DW, Brodala N, Williams RC. Risk factors for endosseous dental implant failure. Dent Clin North Am 2006; 50: 361-374.

  • 32.

    Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Imp Res 2006; 17: 35-51.

  • 33.

    Mijiritsky E, Mazor Z, Lorean A, Levin L. Implant diameter and length influence on survival: interim results during the first 2 years of function of implants by a single manufacturer. Implant Dent 2013; 22: 394-398.

  • 34.

    Attard NJ, Zarb GA. Implant prosthodontic management of partially edentulous patients missing posterior teeth: the Toronto experience. J Prosthet Dent 2003; 89: 352-359.

  • 35.

    Shin S-W, Bryant SR, Zarb GA. A retrospective study on the treatment outcome of wide-bodied implants. Int J Prosthodont 2004; 17: 52-58.

  • 36.

    das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJF. Short implants--an analysis of longitudinal studies. Int J Oral Maxillofac Implants 2006; 21: 899-906.

  • 37.

    Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol 2000; 5: 22-31.##.