Staphylococcus epidermidis virulence factor and ability of macroscopic biofilm production

authors:

avatar shahin najar-peerayeh , avatar Ali Jazayeri Moghadas , * , avatar bita bakhshi


how to cite: najar-peerayeh S, Jazayeri Moghadas A, bakhshi B. Staphylococcus epidermidis virulence factor and ability of macroscopic biofilm production. koomesh. 2016;17(4):e151185. 

Abstract

Introduction: Staphylococcus epidermidis is considered to be an important opportunistic pathogen. S.epidermidis ability to cause infection is due to its biofilm formation ability. Several bacterial molecules act as S. epidermidis adhesion objects and play role in bacterial adhesion to protein or polymeric surfaces. This study aimed to determine the correlation of virulence factors and macroscopic biofilm formation in S. epidermidis clinical isolates. Materials and Methods: A cross-sectional study was conducted including 59 S. epidermidis obtained from blood, urine, tracheal and wound samples in Tehran, Iran. S. epidermidis was identified by conventional bacteriological tests. Phenotypic biofilm formation assay was done by microtiter plate method. The virulence associated genes including icaA, IS256, aap, bhp and fbe were detected by specific PCR. Results: From 59 isolates 36 (61%) were able to produce macroscopic biofilm, of which 12(33.3%) were strong biofilm producers. Of the 36 biofilm producers, 32 (88.9%) were positive for icaA. The majority of the isolates carried fbe (91.7%), IS256 (77.8%), aap (72.2%), while bhp was presented only in (15.3%). Conclusion: This study demonstrated that the presence of virulence factors is correlated with macroscopic biofilm production. The presence of these virulence factors enables S. epidermidis to produce biofilm, colonize and survive in patients. In the case of immune system compromising or hospitalized patients, infections can occur and would be more complicated than the antibiotic resistance cases

References

  • 1.

    Otto M. Staphylococcus epidermidisthe'accidental'pathogen. Nat Rev Microbiol 2009; 7: 555-567.

  • 2.

    Sani NA, Sapri HF, Neoh Hm, Hussin S. First report on the molecular epidemiology of Malaysian Staphylococcus epidermidis isolated from a University Teaching Hospital. BMC Res Notes 2014; 7: 597.

  • 3.

    Rohde H, Kalitzky M, Krger N, Scherpe S, Horstkotte MA, Knobloch JK, et al. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 2004; 42: 5614-5619.

  • 4.

    Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg Infect Control 2014; 9.

  • 5.

    Luther MK, Bilida S, Mermel LA, LaPlante KL. Ethanol and isopropyl alcohol exposure increases biofilm formation in staphylococcus aureus and staphylococcus epidermidis. Infect Dis Ther 2015: 1-8.

  • 6.

    Asai K, Yamada K, Yagi T, Baba H, Kawamura I, Ohta M. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J Infect Chemother 2015; 21: 55-61.

  • 7.

    Tafin UF, Betrisey B, Bohner M, Ilchmann T, Trampuz A, Clauss M. Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis. J Mater Sci Mater Med 2015; 26: 1-8.

  • 8.

    Pinheiro L, Brito CI, Pereira VC, Oliveira Ad, Camargo CH, Cunha MdLRd. Reduced susceptibility to vancomycin and biofilm formation in methicillin-resistant Staphylococcus epidermidis isolated from blood cultures. Mem Inst Oswaldo Cruz 2014; 109: 871-878.

  • 9.

    Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33: 5967-5982.

  • 10.

    Arciola CR, Campoccia D, Gamberini S, Donati ME, Montanaro L. Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials 2004; 25: 4825-4829.

  • 11.

    Otto M. Molecular basis of staphylococcus epidermidis infections. Semin Immunopathol 2012; 34: 201-214.

  • 12.

    Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5.

  • 13.

    Gad GF, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, El-Baky RM. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 2009; 3: 342-351.

  • 14.

    Koskela A, Nilsdotter-Augustinsson , Persson L, Sderquist B. Prevalence of the ica operon and insertion sequence IS256 among Staphylococcus epidermidis prosthetic joint infection isolates. Eur J Clin Microbiol Infect Dis 2009; 28: 655-660.

  • 15.

    Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, et al. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 2005; 151: 1453-1464.

  • 16.

    Rohde H, Frankenberger S, Zhringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 2010; 89: 103-111.

  • 17.

    Forbes BA, Sahm DF, Weissfeld AS. Study guide for bailey & scott's diagnostic microbiology: Mosby; 2007.

  • 18.

    Sharon J. Peacock. Staphylococcus. In: Topley wilsons Microbiology & Microbial Infections.10th ed. Hodder Arnold. 2005; p: 771-816.

  • 19.

    Los R, Sawicki R, Juda M, Stankevic M, Rybojad P, Sawicki M, et al. A comparative analysis of phenotypic and genotypic methods for the determination of the biofilm-forming abilities of Staphylococcus epidermidis. FEMS Microbiol Lett 2010; 310: 97-103.

  • 20.

    Pourmand MR, Abdossamadi Z, Salari MH, Hosseini M. Slime layer formation and the prevalence of mecA and aap genes in Staphylococcus epidermidis isolates. J Infect Dev Ctries 2010; 5: 34-40.

  • 21.

    Bttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015; 5.

  • 22.

    Decker R, Burdelski C, Zobiak M, Bttner H, Franke G, Christner M, et al. An 18 kDa scaffold protein is critical for staphylococcus epidermidis biofilm formation. PLoS Pathog 2015; 11: e1004735.

  • 23.

    Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol 2015; 830: 29-46.

  • 24.

    Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol 2014; 4: 171.

  • 25.

    Lduma I, Traevska T, Brs U, ilevia A. Phenotypic and genetic analysis of biofilm formation by Staphylococcus epidermidis. Medicina (Kaunas, Lithuania) 2011; 48: 305-309.