Abstract
Keywords
Artificial Neural Network Bivariate Logistic Regression Myocardial Infarction شبکه عصبی مصنوعی رگرسیون لجستیک دومتغیره سکته قلبی
References
-
1.
Regan M, Catalano P. Likelihood models for clustered binary and continuous outcomes Application to Developmental toxicology. Biometrics 1999; 55: 760-768.
-
2.
Teixeira-Pinto A, Normand T. Correlated bivariate continuous and binary outcomes issues and applications. Stat Med 2009; 28: 753-773.
-
3.
Anderson A. An introduction to neural network, Cambridge, MA: MIT press; 1995: 795-851.
-
4.
Gupta P, Bikrampal K. Accuracy enhancement of heart disease diagnosis system using neural network and genetic algorithm. Int J Adv Res Comput Sci Softw Eng 2014; 4: 160-166.
-
5.
Menhaj MB, editor. Fundamentals of neural networks. 8th ed. Amir Kabir Univ pub; 2012 (Persian).
-
6.
Babaei M, Mohammad Khan Kermanshahi S, Alhani F. Influence of discharge planning on anxiety levels in patients with myocardial infarction. Koomesh 2011; 12: 272-278.
-
7.
Anman EM, Braunwald E. Acute myocardial infarction. In: Braunwald E, Zips D, Libby P, editors. Heart Disease, 6th ed. Philadelphia: W.B. Saunders Com; 2001; P: 1114-1219.
-
8.
Ahmadi A, Soori H, Mehrabi Y, Etemad K, Khaledifar A. Epidemiologic pattern of myocardial infarction and modeling risk factors relevant to in-hospital mortality: the first results from Iranian Myocardial Infarction Registry. Kardiologia Polska 2015; 73: 451-457.
-
9.
Asgari M R, Jafarpoor H, Soleimani M, Ghorbani R, Askandarian R, Jafaripour I. Effects of early mobilization program on depression of patients with myocardial infarction hospitalized in CCU. Koomesh 2015; 16: 175-118.
-
10.
Sadri P, Khaledifar A, Ahmadi A. Survey of the incidence rate of complete bundle branch block in patients with acute myocardial infarction in CCU ward in Hagar hospital. [Dissertation] Shahre Kord. Shahre kord Univ Med Sci 2013-14 (Persian).
-
11.
Kay JW, Titterington DM, editors. Statistics and neural networks: Advanced at the interface. Oxford: Oxford University Press; 1999.
-
12.
Wang S. An insight into the standard back propagation neural network model for regression analysis. J Mgmt Sci 1998; 26: 133-140.
-
13.
Sedehi M, Mehrabi Y, Kazemnejad A, Joharimajd V, Hadaegh F. Artificial neural network design for modeling of mixed bivariate outcomes in medical research data. Iranian J Epidemiol 2010; 6: 28-39. (Persian).
-
14.
Parsaeian M, Mohammad K, Mahmoudi M, Zeraati H. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey. Iran J Public Health 2012; 41: 86-92.
-
15.
Hosseini Teshnizi S, Ayatollahi SM. A comparison of logistic regression model and artificial neural networks in predicting of students academic failure. Acta Inrorm Med 2015; 23: 296-300.
-
16.
Sedehi M, Mehrabi Y, Kazemnejad A, Johari-majd V, Hadaegh F. Design of artificial neural network for joint predicting of metabolic syndrome and HOMA-IR. Daneshvar 2009; 17: 29-36. (Persian).
-
17.
Adeli M, et al. Application of artificial neural network model in predicting the mixed response of atherosclerosis disease. RJMS 2013; 20: 20-28. (Persian).
-
18.
Biglarian A, Hajizadeh E, Kazemnejad A, Zali MR. Application of artificial neural network in predicting the survival rate of gastric cancer patients. Iran J Public Health 2011; 40: 80-86.##.