Logo

Investigation on the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Cultured on a Non-woven Carboxymethyl Cellulose Scaffold Into Chondrocyte-Like Cells

Author(s):
Negar AsadollaheiNegar Asadollahei1, Forough SayahpourForough Sayahpour2, Fariba KarimzadehFariba KarimzadehFariba Karimzadeh ORCID3, Afzal KarimiAfzal Karimi4, Abolfazl LotfiAbolfazl Lotfi5, Faezeh FaghihiFaezeh Faghihi6,*
1Department of Developmental Biology, University of Science and Culture, Tehran, Iran
2Dentistry School, Marquette University, Milwaukee, WI, 53233, USA
3Cellular and Molecular Research Center, Iran University of Medical Sciences ,Tehran, Iran
4Department of Tissue Engineering, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
5Agricultural College of Damavand, Technical and Vocational University, Tehran, Iran
6Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

Koomesh:Vol. 26, issue 6; e151662
Published online:Feb 24, 2025
Article type:Research Article
How to Cite:Asadollahei N, Sayahpour F, Karimzadeh F, Karimi A, Lotfi A, et al. Investigation on the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Cultured on a Non-woven Carboxymethyl Cellulose Scaffold Into Chondrocyte-Like Cells.koomesh.2025;26(6):e151662.https://doi.org/10.69107/koomesh-151662.

Abstract

References

  • 1.
    Chuah YJ, Peck Y, Lau JE, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci. 2017;5(4):613-31. [PubMed ID:28233881]. https://doi.org/10.1039/c6bm00863a.
  • 2.
    Roy S, Rhim JW. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol. 2020;148:666-76. [PubMed ID:31978467]. https://doi.org/10.1016/j.ijbiomac.2020.01.204.
  • 3.
    Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457-70. [PubMed ID:19458646]. https://doi.org/10.1038/nmat2441.
  • 4.
    Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev. 2011;111(8):4453-74. [PubMed ID:21417222]. https://doi.org/10.1021/cr100123h.
  • 5.
    Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, et al. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel). 2021;13(8). [PubMed ID:33924089]. [PubMed Central ID:PMC8074295]. https://doi.org/10.3390/polym13081345.
  • 6.
    Zennifer A, Senthilvelan P, Sethuraman S, Sundaramurthi D. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr Polym. 2021;256:117561. [PubMed ID:33483063]. https://doi.org/10.1016/j.carbpol.2020.117561.
  • 7.
    Rosilio V, Albrecht G, Baszkin A, Merle L. Surface properties of hydrophobically modified carboxymethylcellulose derivatives. Effect of salt and proteins. Colloids Surfaces B: Biointerfaces. 2000;19(2):163-72. https://doi.org/10.1016/s0927-7765(00)00151-x.
  • 8.
    Ali M, Khan NR, Basit HM, Mahmood S. Physico-chemical based mechanistic insight into surfactant modulated sodium Carboxymethylcellulose film for skin tissue regeneration applications. J Polymer Res. 2019;27(1). https://doi.org/10.1007/s10965-019-1987-y.
  • 9.
    Gregorova A, Saha N, Kitano T, Saha P. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydr Polym. 2015;117:559-68. [PubMed ID:25498671]. https://doi.org/10.1016/j.carbpol.2014.10.009.
  • 10.
    Cadena-Velandia ZG, Montenegro-Alarcón JC, Marquínez-Casas X, Mora-Huertas CE. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J Drug Delivery Sci Technol. 2020;56. https://doi.org/10.1016/j.jddst.2020.101558.
  • 11.
    Arora A, Mahajan A, Katti DS. TGF-beta1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis. Colloids Surf B Biointerfaces. 2017;159:838-48. [PubMed ID:28888201]. https://doi.org/10.1016/j.colsurfb.2017.08.035.
  • 12.
    Singh BN, Panda NN, Mund R, Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym. 2016;151:335-47. [PubMed ID:27474575]. https://doi.org/10.1016/j.carbpol.2016.05.088.
  • 13.
    Kulikowska A, Wasiak I, Ciach T. Carboxymethyl Cellulose Oxidation to Form Aldehyde Groups. Challenges Mod Technol. 2013;4.
  • 14.
    Hedayati R, Aminianfar A, Darbani M, Dadbakhsh M, Ehsani F. [Efficacy of glucosamine compounds phonophoresis in knee osteoarthritis]. Koomesh. 2016;18(2):e151136. Persian.
  • 15.
    Leone G, Delfini M, Di Cocco ME, Borioni A, Barbucci R. The applicability of an amidated polysaccharide hydrogel as a cartilage substitute: structural and rheological characterization. Carbohydr Res. 2008;343(2):317-27. [PubMed ID:18039540]. https://doi.org/10.1016/j.carres.2007.10.017.
  • 16.
    Solali S, Kaviani jebeli S, Soleimani M, Zonoubi Z. [Isolation and characterization of mesenchymal stem cells derived from adipose tissue]. Koomesh. 2015;16(4):e151234. Persian.
  • 17.
    Ogushi Y, Sakai S, Kawakami K. Hepatocytes exhibit constant metabolic activity on carboxymethylcellulose-based hydrogel with high phenolic hydroxy group content. Biochem Engin J. 2010;51(3):147-52. https://doi.org/10.1016/j.bej.2010.06.008.
  • 18.
    Sakai S, Ogushi Y, Kawakami K. Enzymatically crosslinked carboxymethylcellulose-tyramine conjugate hydrogel: cellular adhesiveness and feasibility for cell sheet technology. Acta Biomater. 2009;5(2):554-9. [PubMed ID:19010747]. https://doi.org/10.1016/j.actbio.2008.10.010.
  • 19.
    Song X, Melro L, Padrão J, Ribeiro AI, Yu L, Zille A. 20 - Nonwoven materials and technologies for medical applications. In: Mondal MIH, editor. Medical Textiles from Natural Resources. Sawston, Cambridge: Woodhead Publishing; 2022. p. 605-61.
  • 20.
    Wang Q, Du H, Zhang F, Zhang Y, Wu M, Yu G, et al. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J Materials Chem A. 2018;6(27):13021-30. https://doi.org/10.1039/c8ta01986j.
  • 21.
    Pitpisutkul V, Prachayawarakorn J. Hydroxypropyl methylcellulose/carboxymethyl starch/zinc oxide porous nanocomposite films for wound dressing application. Carbohydr Polym. 2022;298:120082. [PubMed ID:36241320]. https://doi.org/10.1016/j.carbpol.2022.120082.
  • 22.
    Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Sharifian A, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017;10(3):208-13. [PubMed ID:29118937]. [PubMed Central ID:PMC5660271].
  • 23.
    Bhat S, Viswanathan P, Chandanala S, Jyothi Prasanna S, Raviraja N. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci Rep. 2021;11:3403. https://doi.org/10.1038/s41598-021-83088-1.
  • 24.
    Gardner OF, Alini M, Stoddart MJ. Mesenchymal Stem Cells Derived from Human Bone Marrow. Methods Mol Biol. 2015;1340:41-52. [PubMed ID:26445829]. https://doi.org/10.1007/978-1-4939-2938-2_3.
  • 25.
    Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, et al. Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Insulin-Producing Cells: Evidence for Further Maturation In Vivo. Biomed Res Int. 2015;2015:575837. [PubMed ID:26064925]. [PubMed Central ID:PMC4443784]. https://doi.org/10.1155/2015/575837.
  • 26.
    Golizadeh M, Karimi A, Gandomi-Ravandi S, Vossoughi M, Khafaji M, Joghataei MT, et al. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydr Polym. 2019;207:796-805. [PubMed ID:30600068]. https://doi.org/10.1016/j.carbpol.2018.12.028.
  • 27.
    Enoch K, Somasundaram AA. Rheological insights on Carboxymethyl cellulose hydrogels. Int J Biol Macromol. 2023;253(Pt 8):127481. [PubMed ID:37865366]. https://doi.org/10.1016/j.ijbiomac.2023.127481.
  • 28.
    Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res. 2017;58(1):2-14. [PubMed ID:27128146]. [PubMed Central ID:PMC5287363]. https://doi.org/10.1080/03008207.2016.1183667.
  • 29.
    Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997;17(4):2336-46. [PubMed ID:9121483]. [PubMed Central ID:PMC232082]. https://doi.org/10.1128/MCB.17.4.2336.
  • 30.
    Aigner T, Stove J. Collagens--major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev. 2003;55(12):1569-93. [PubMed ID:14623402]. https://doi.org/10.1016/j.addr.2003.08.009.
  • 31.
    Dalir Abdolahinia E, Jafari B, Parvizpour S, Barar J, Nadri S, Omidi Y. Role of cellulose family in fibril organization of collagen for forming 3D cancer spheroids: In vitro and in silico approach. Bioimpacts. 2021;11(2):111-7. [PubMed ID:33842281]. [PubMed Central ID:PMC8022235]. https://doi.org/10.34172/bi.2021.18.
  • 32.
    Lin L, Jiang S, Yang J, Qiu J, Jiao X, Yue X, et al. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int J Bioprint. 2023;9(1):637. [PubMed ID:36844245]. [PubMed Central ID:PMC9947488]. https://doi.org/10.18063/ijb.v9i1.637.
  • 33.
    Cordeiro R, Alvites RD, Sousa AC, Lopes B, Sousa P, Mauricio AC, et al. Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage. Polymers (Basel). 2023;15(3). [PubMed ID:36772083]. [PubMed Central ID:PMC9919712]. https://doi.org/10.3390/polym15030781.
  • 34.
    Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol. 2021;9:736213. [PubMed ID:34485266]. [PubMed Central ID:PMC8415884]. https://doi.org/10.3389/fbioe.2021.736213.
  • 35.
    Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-beta1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. J Biomater Sci Polym Ed. 2021;32(18):2402-22. [PubMed ID:34428384]. https://doi.org/10.1080/09205063.2021.1971823.
  • 36.
    Lee KW, Chung K, Nam DH, Jung M, Kim SH, Kim HG. Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair. Acta Biomater. 2023;172:297-308. [PubMed ID:37813156]. https://doi.org/10.1016/j.actbio.2023.10.008.
  • 37.
    Cochis A, Grad S, Stoddart MJ, Fare S, Altomare L, Azzimonti B, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep. 2017;7:45018. [PubMed ID:28332587]. [PubMed Central ID:PMC5362895]. https://doi.org/10.1038/srep45018.
  • 38.
    Le BQ, Vasilevich A, Vermeulen S, Hulshof F, Stamatialis DF, van Blitterswijk CA, et al. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Eng Part A. 2017;23(9-10):458-69. [PubMed ID:28152670]. https://doi.org/10.1089/ten.TEA.2016.0421.
comments

Leave a comment here


Crossmark
Crossmark
Checking
Share on
Cited by
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles