Review on Interferon beta: from cells to clinical usage

authors:

avatar Fatemeh Hajilou , avatar Pouya Youeseflee , avatar Mehrnoosh Pashaei ORCID , avatar Kimiya Bagheri , avatar Bahador Bagheri ORCID , *


how to cite: Hajilou F, Youeseflee P, Pashaei M, Bagheri K, Bagheri B. Review on Interferon beta: from cells to clinical usage. koomesh. 2022;24(1):e152384. 

Abstract

Introduction: Interferon (IFN) was first introduced by Isaacs and Linddeman in 1957. It referred to a factor that could cause inhibition in the growth of the live influenza virus. Interferons are intracellular proteins that are involved in many cellular processes such as growth, proliferation, differentiation, metabolism of the extracellular matrix, apoptosis, and regulating immune responses. There are different intereferones. Amog them, interferons-beta (IFN-β) is a natural cytokine produced by immune cells in response to biological and chemical stimuli. Signal transduction of IFN-β is initiated throughout a heterodimeric receptor complex that is composed of IFNAR1 and IFNAR2 which leads to expression of various proteins via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway as well as other pathways. In addition to antiviral effects of IFN-β, it has been shown to have therapeutic effects in some autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and lupus. It has recently been shown that the use of IFN-β in combination with other antiviral compounds may be effective in treatment of Covid-19. In this review the various topics about IFN-β are investigated such as signalling pathways, biological functions, therapeutic effects, and side effects of IFN-β therapy.  

References

  • 1.

    Abdolvahab MH, Mofrad M, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol 2016; 326: 343-372. https://doi.org/10.1016/bs.ircmb.2016.06.001 PMid:27572132.

  • 2.

    De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S. The interferon system: an overview. Eur J Paediatr Neurol 2002; 6: A41-A46. https://doi.org/10.1053/ejpn.2002.0573 PMid:12365360.

  • 3.

    Lee A, Ashkar A. The dual nature of type I and type II interferons. Front Immunol 2018; 9: 2061. https://doi.org/10.3389/fimmu.2018.02061 PMid:30254639 PMCid:PMC6141705.

  • 4.

    Hermant P, Michiels T. Interferon- in the context of viral infections: production, response and therapeutic implications. J Innate Immun 2014; 6: 563-574. https://doi.org/10.1159/000360084 PMid:24751921 PMCid:PMC6741612.

  • 5.

    Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836-848. https://doi.org/10.1038/nri1961 PMid:17063185.

  • 6.

    Filippini G, Munari L, Incorvaia B, Ebers GC, Polman C, D'Amico R, Rice GP. Interferons in relapsing remitting multiple sclerosis: a systematic review. The Lancet 2003; 361: 545-552. https://doi.org/10.1016/S0140-6736(03)13420-4 https://doi.org/10.1016/S0140-6736(03)13422-8 https://doi.org/10.1016/S0140-6736(03)12512-3.

  • 7.

    Seger RA. Modern management of chronic granulomatous disease. Br J Haematol 2008; 140: 255-266. https://doi.org/10.1111/j.1365-2141.2007.06880.x PMid:18217895.

  • 8.

    Bhatti Z, Berenson CS. Adult systemic cat scratch disease associated with therapy for hepatitis C. BMC Infect Dis 2007; 7: 1-4. https://doi.org/10.1186/1471-2334-7-8 PMid:17319959 PMCid:PMC1810538.

  • 9.

    Uze G, Schreiber G, Piehler J, Pellegrini S. The receptor of the type I interferon family. Interferon: The 50th Anniversary: Springer; 2007; p: 71-95. https://doi.org/10.1007/978-3-540-71329-6_5 PMid:17969444.

  • 10.

    Langer JA, Cutrone EC, Kotenko S. The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 2004; 15: 33-48. https://doi.org/10.1016/j.cytogfr.2003.10.001 PMid:14746812.

  • 11.

    Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect 2005; 18: 243-249. https://doi.org/10.1358/dnp.2005.18.4.908658 PMid:16034480.

  • 12.

    Fleming SB. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines 2016; 4: 23. https://doi.org/10.3390/vaccines4030023 PMid:27367734 MCid:PMC5041017.

  • 13.

    Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14: 36-49. https://doi.org/10.1038/nri3581 PMid:24362405 PMCid:PMC4084561.

  • 14.

    Kasper LH, Reder AT. Immunomodulatory activity of interferonbeta. Annal Clin Translat Neurol 2014; 1: 622-631. https://doi.org/10.1002/acn3.84 PMid:25356432 PMCid:PMC4184564.

  • 15.

    Derkow K, Bauer JM, Hecker M, Paap BK, Thamilarasan M, Koczan D, Schott E, Deuschle K, Bellmann-Strobl J, Paul F. Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon- includes upregulation of TLR7 in plasmacytoid dendritic cells. PloS One 2013; 8: e70626. https://doi.org/10.1371/journal.pone.0070626 PMid:23950974 PMCid:PMC3741212.

  • 16.

    Yen JH, Kong W, Ganea D. IFN- Inhibits Dendritic Cell Migration through STAT-1-Mediated Transcriptional Suppression of CCR7 and Matrix Metalloproteinase 9. J Immunol 2010; 184: 3478-3486. https://doi.org/10.4049/jimmunol.0902542 PMid:20190134 PMCid:PMC2877494.

  • 17.

    Liu Y, Marin A, Ejlerskov P, Rasmussen LM, Prinz M, Issazadeh-Navikas S. Neuronal IFN-beta-induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1+ T reg cells. Nat Commun 2017; 8: 1-15. https://doi.org/10.1038/ncomms14709 PMid:28436428 PMCid:PMC5413980.

  • 18.

    Hallal-Longo DE, Mirandola SR, Oliveira EC, Farias AS, Pereira FG, Metze IL, e al. Diminished myelin-specific T cell activation associated with increase in CTLA4 and Fas molecules in multiple sclerosis patients treated with IFN-. J Interferon Cytokine Res 2007; 27: 865-874. https://doi.org/10.1089/jir.2007.0018 PMid:17970696.

  • 19.

    Hojati Z, Kay M, Dehghanian F. Mechanism of action of interferon beta in treatment of multiple sclerosis. Multiple sclerosis: Elsevier; 2016. p. 365-92. https://doi.org/10.1016/B978-0-12-800763-1.00015-4.

  • 20.

    Huang H, Ito K, Dangond F, Dhib-Jalbut S. Effect of interferon beta-1a on B7. 1 and B7. 2 B-cell expression and its impact on T-cell proliferation. J Neuroimmunol 2013; 258: 27-31. https://doi.org/10.1016/j.jneuroim.2013.02.010 PMid:23489746.

  • 21.

    Dhib-Jalbut S, Marks S. Interferon- mechanisms of action in multiple sclerosis. Neurology 2010; 74: S17-S24. https://doi.org/10.1212/WNL.0b013e3181c97d99 PMid:20038758.

  • 22.

    Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8: 559-568. https://doi.org/10.1038/nri2314 PMid:18575461 PMCid:PMC2522268.

  • 23.

    Gonzlez-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12: 125-135. https://doi.org/10.1038/nri3133 PMid:22222875 PMCid:PMC3727154.

  • 24.

    Reang P, Gupta M, Kohli K. Biological response modifiers in cancer. MedGenMed 2006; 8: 33.

  • 25.

    Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH. Interferon modulates inflammatory response in cerebral ischemia. J Am Heart Assoc 2016; 5: e002610. https://doi.org/10.1161/JAHA.115.002610 PMid:26747000 PMCid:PMC4859377.

  • 26.

    Cudrici C, Niculescu T, Niculescu F, Shin ML, Rus H. Oligodendrocyte cell death in pathogenesis of multiple sclerosis: Protection of oligodendrocytes from apoptosis by complement. J Rehab Res Dev 2006; 43. https://doi.org/10.1682/JRRD.2004.08.0111 PMid:16847778.

  • 27.

    Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Current Neuropharmacol 2011; 9: 409-416. https://doi.org/10.2174/157015911796557911 PMid:22379455 PMCid:PMC3151595.

  • 28.

    Shrivastav M, Niewold TB. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front Immunol 2013; 4: 319. https://doi.org/10.3389/fimmu.2013.00319 PMid:24109483 PMCid:PMC3791549.

  • 29.

    Theofilopoulos AN. TLRs and IFNs: critical pieces of the autoimmunity puzzle. J Clin Invest 2012; 122: 3464-3466. https://doi.org/10.1172/JCI63835 PMid:23154274 PMCid:PMC3461918.

  • 30.

    Schwarting A, Paul K, Tschirner S, Menke J, Hansen T, Brenner W, Kelley VR, Relle M, Galle PR. Interferon-: a therapeutic for autoimmune lupus in MRL-Faslpr mice. J Am Soc Nephrol 2005; 16: 3264-3272. https://doi.org/10.1681/ASN.2004111014 PMid:16221871.

  • 31.

    Hamilton JA, Wu Q, Yang P, Luo B, Liu S, Li J, Mattheyses AL, Sanz I, Chatham WW, Hsu HC. Cutting edge: intracellular IFN- and distinct type I IFN expression patterns in circulating systemic lupus erythematosus B cells. J Immunol 2018; 201: 2203-2208. https://doi.org/10.4049/jimmunol.1800791 PMid:30201809 PMCid:PMC6230322.

  • 32.

    Karonitsch T, Dalwigk K, Byrne R, Niedereiter B, Cetin E, Wanivenhaus A, Scheinecker C, Smolen J, Kiener H. IFN-gamma promotes fibroblast-like synoviocytes motility. Annals of the Rheumatic Diseases 2010; 69: A63-A. https://doi.org/10.1136/ard.2010.129650k.

  • 33.

    Page CE, Smale S, Carty SM, Amos N, Lauder SN, Goodfellow RM, et al. Interferon- inhibits interleukin-1-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther 2010; 12: 1-10. https://doi.org/10.1186/ar2960 PMid:20307272 PMCid:PMC2888198.

  • 34.

    Vervoordeldonk MJ, Aalbers CJ, Tak PP. Interferon for rheumatoid arthritis: new clothes for an old kid on the block. Ann Rheum Dis 2009; 68: 157-158. https://doi.org/10.1136/ard.2008.097899 PMid:19139202.

  • 35.

    Smeets TJ, Dayer JM, Kraan MC, Versendaal J, Chicheportiche R, Breedveld FC, Tak PP. The effects of interferon treatment on synovial inflammation and expression of metalloproteinases in patients with rheumatoid arthritis. Arthritis Rheum 2000; 43: 270-274. https://doi.org/10.1002/1529-0131(200002)43:2<270::AID-ANR5>3.0.CO;2-H.

  • 36.

    Genovese MC, Chakravarty EF, Krishnan E, Moreland LW. A randomized, controlled trial of interferon--1a (Avonex) in patients with rheumatoid arthritis: a pilot study [ISRCTN03626626]. Arthritis Res Ther 2003; 6: 1-5.

  • 37.

    Heidari N, Abbasi H, Namaki S, Hashemi SM. Application of extracellular vesicles in the treatment of inflammatory bowel disease. Koomesh 2020; 22: 209-219. https://doi.org/10.29252/koomesh.22.2.209.

  • 38.

    Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011; 140: 1827-1837. e2. https://doi.org/10.1053/j.gastro.2011.02.045 PMid:21530749.

  • 39.

    Nikolaus S, Rutgeerts P, Fedorak R, Steinhart A, Wild G, Theuer D, Mhrle J, Schreiber S. Interferon -1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 2003; 52: 1286-1290. https://doi.org/10.1136/gut.52.9.1286 PMid:12912859 PMCid:PMC1773804.

  • 40.

    Madsen S, Schlichting P, Davidsen B, Nielsen O, Federspiel B, Riis P, Munkholm P. An open-labeled, randomized study comparing systemic interferon--2A and prednisolone enemas in the treatment of left-sided ulcerative colitis. The Am J Gastroenterol 2001; 96: 1807-1815. https://doi.org/10.1016/S0002-9270(01)02438-8 https://doi.org/10.1111/j.1572-0241.2001.03875.x PMid:11419834.

  • 41.

    Rossi CP, Hanauer SB, Tomasevic R, Hunter JO, Shafran I, Graffner H. Interferon beta-1a for the maintenance of remission in patients with Crohn's disease: results of a phase II dose-finding study. BMC Gastroenterol 2009; 9: 1-10. https://doi.org/10.1186/1471-230X-9-22 PMid:19302707 PMCid:PMC2674451.

  • 42.

    McFarland AP, Savan R, Wagage S, Addison A, Ramakrishnan K, Karwan M, et al. Localized delivery of interferon- by Lactobacillus exacerbates experimental colitis. PloS One 2011; 6: e16967. https://doi.org/10.1371/journal.pone.0016967 PMid:21365015 PMCid:PMC3041828.

  • 43.

    Mitoro A, Yoshikawa M, Yamamoto K, Mimura M, Yoshikawa Y, Shiroi A, et al. Exacerbation of ulcerative colitis during alpha-interferon therapy for chronic hepatitis C. Intern Med 1993; 32: 327-331. https://doi.org/10.2169/internalmedicine.32.327 PMid:8102914.

  • 44.

    Schott E, Paul F, Wuerfel JT, Zipp F, Rudolph B, Wiedenmann B, Baumgart DC. Development of ulcerative colitis in a patient with multiple sclerosis following treatment with interferon 1a. World J Gastroenterol 2007; 13: 3638-3640. https://doi.org/10.3748/wjg.v13.i26.3638 PMid:17659718 PMCid:PMC4146807.

  • 45.

    Spiegel M, Pichlmair A, Mhlberger E, Haller O, Weber F. The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 2004; 30: 211-213. https://doi.org/10.1016/j.jcv.2003.11.013 PMid:15135736 PMCid:PMC7128634.

  • 46.

    Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Treatment of SARS with human interferons. The Lancet 2003; 362: 293-294. https://doi.org/10.1016/S0140-6736(03)14483-2 https://doi.org/10.1016/S0140-6736(03)13973-6.

  • 47.

    Payandemehr P, Azhdarzadeh M, Bahrami-Motlagh H, Hadadi A, Najmeddin F, Shahmirzaei S, et al. Interferon beta-1a as a Candidate for COVID-19 treatment; an open-label single-arm clinical trial. Adv J Emerg Med 2020; 4: e51.

  • 48.

    Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, et al. A randomized clinical trial of the efficacy and safety of interferon -1a in treatment of severe COVID-19. Antimicrob Agents Chemother 2020; 64: e01061-20. https://doi.org/10.1128/AAC.01061-20 PMid:32661006 PMCid:PMC7449227.

  • 49.

    Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet 2020; 395: 1695-1704. https://doi.org/10.1016/S0140-6736(20)31042-4.

  • 50.

    Sheahan TP, Sims AC, Leist SR, Schfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11: 1-14. https://doi.org/10.1038/s41467-019-13940-6 PMid:31924756 PMCid:PMC6954302.

  • 51.

    Dastan F, Nadji SA, Saffaei A, Marjani M, Moniri A, Jamaati H, et al. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int Immunopharmacol 2020; 85: 106688. https://doi.org/10.1016/j.intimp.2020.106688 PMid:32544867 PMCid:PMC7275997.

  • 52.

    Khamis F, Al Naabi H, Al Lawati A, Ambusaidi Z, Al Sharji M, Al Barwani U, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis 2021; 102: 538-543. https://doi.org/10.1016/j.ijid.2020.11.008 PMid:33181328 PMCid:PMC7833906.

  • 53.

    Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med 2021; 9: 196-206. https://doi.org/10.1016/S2213-2600(20)30511-7.

  • 54.

    Dorgham K, Neumann AU, Decavele M, Luyt CE, Yssel H, Gorochov G. Considering personalized interferon beta therapy for COVID-19. Antimicrob Agents Chemother 2021; 65: e00065-21. https://doi.org/10.1128/AAC.00065-21 PMid:33558300 PMCid:PMC8097459.

  • 55.

    Chiang J, Gloff CA, Yoshizawa CN, Williams GJ. Pharmacokinetics of recombinant human interferon- ser in healthy volunteers and its effect on serum neopterin. Pharm Res 1993; 10: 567-572. https://doi.org/10.1023/A:1018902120023 PMid:8483840.

  • 56.

    Panitch H, Goodin D, Francis G, Chang P, Coyle P, O'Connor P, et al. Benefits of high-dose, high-frequency interferon beta-1a in relapsing-remitting multiple sclerosis are sustained to 16 months: Final comparative results of the EVIDENCE trial. J Neurol Sci 2005; 239: 67-74. https://doi.org/10.1016/j.jns.2005.08.003 PMid:16169561.

  • 57.

    Beheshti A, Birjandi B, Khosravi A, Ghafarzadegan K. Autoimmune hepatitis induced by interferon beta therapy in a patient with multiple sclerosis. Med J Mashhad Univ Med Sci 2015; 58: 225-229. (Persian).

  • 58.

    Rommer P, Zettl U, Kieseier B, Hartung HP, Menge T, Frohman E, et al. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin Exp Immunol 2014; 175: 397-407. https://doi.org/10.1111/cei.12206 PMid:24102425 PMCid:PMC3927900.

  • 59.

    Ricchi P, Ammirabile M, Costantini S, Cinque P, Lanza AG, Spasiano A, et al. The impact of previous or concomitant IFN therapy on deferiprone-induced agranulocytosis and neutropenia: a retrospective study. Expert Opin Drug Saf 2010; 9: 875-881. https://doi.org/10.1517/14740338.2010.510831 PMid:20945995.

  • 60.

    Nokta M, Loh J, Douidar SM, Ahmed AE, Pollard RB. Metabolic interaction of recombinant interferon- and zidovudine in AIDS patients. J Interferon Res 1991; 11: 159-164. https://doi.org/10.1089/jir.1991.11.159 PMid:1919075.

  • 61.

    Stewart N, Simpson S, van der Mei I, Ponsonby AL, Blizzard L, Dwyer T, et al. Interferon- and serum 25-hydroxyvitamin D interact to modulate relapse risk in MS. Neurology 2012; 79: 254-260. https://doi.org/10.1212/WNL.0b013e31825fded9 PMid:22700816.

  • 62.

    Corominas M, Gastaminza G, Lobera T. Hypersensitivity reactions to biological drugs. J Investig Allergol Clin Immunol 2014; 24: 212-225.

  • 63.

    Lublin F, Whitaker J, Eidelman B, Miller A, Arnason B, Burks J. Management of patients receiving interferon beta-1b for multiple sclerosis: report of a consensus conference. Neurology 1996; 46: 12-18. https://doi.org/10.1212/WNL.46.1.12 PMid:8559358.