Role of microRNA as a biomarker in Alzheimer’s disease

authors:

avatar Adele jafari , avatar Behrooz Khakpour Taleghani , avatar Parvaneh Keshavarz , avatar Mohammad Akhoondian , avatar leila alidoust , *


how to cite: jafari A, Khakpour Taleghani B, Keshavarz P, Akhoondian M, alidoust L. Role of microRNA as a biomarker in Alzheimer’s disease. koomesh. 2022;24(1):e152385. 

Abstract

Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, and neurodegenerative diseases such as Alzheimer;#39s are associated with microRNA defects. microRNAs are highly stable in biological fluids, abundant in the brain, and regulate the processes involved in the onset and progression of Alzheimer;#39s disease. Early detection of Alzheimer;#39s as the most common dementia is not easily possible at present. By finding reliable and highly sensitive biomarkers, especially in the early stages of the disease, interventions will be performed at a better time to achieve a better clinical outcome. Thus, microRNAs have great potential as diagnostic and prognostic biomarkers.  At the same time, modulating them could be a potential treatment strategy for Alzheimer;#39s disease. The aim of this review is to describe microRNAs, their biogenesis, and their role in the pathogenesis of Alzheimer;#39s disease and to investigate the importance of these molecules in the role of diagnostic biomarkers

References

  • 1.

    Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol 2018; 25: 59-70. https://doi.org/10.1111/ene.13439 PMid:28872215.

  • 2.

    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: Report of the NINCDSADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-939. https://doi.org/10.1212/WNL.34.7.939 PMid:6610841.

  • 3.

    Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 2013; 9: e1003569. https://doi.org/10.1371/journal.pgen.1003569 PMid:23818866 PMCid:PMC3688513.

  • 4.

    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458: 223-227. https://doi.org/10.1038/nature07672 PMid:19182780 PMCid:PMC2754849.

  • 5.

    Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics 2010; 96: 1-9. https://doi.org/10.1016/j.ygeno.2010.03.009 PMid:20347954.

  • 6.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5.

  • 7.

    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y.

  • 8.

    Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93-103. https://doi.org/10.1038/nrg1990 PMid:17230196.

  • 9.

    Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. The EMBO J 2002; 21: 4663-4670. https://doi.org/10.1093/emboj/cdf476 PMid:12198168 PMCid:PMC126204.

  • 10.

    Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL. Structure and activity of putative intronic miRNA promoters. Rna 2010; 16: 495-505. https://doi.org/10.1261/rna.1731910 PMid:20075166 PMCid:PMC2822915.

  • 11.

    Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 2010; 148: 381-392. https://doi.org/10.1093/jb/mvq096 PMid:20833630 PMCid:PMC2981492.

  • 12.

    Wang Z, Yao H, Lin Sh, Zhu X, Shen Z, Lu G, et al., Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013; 331: 1-10. https://doi.org/10.1016/j.canlet.2012.12.006 PMid:23246373.

  • 13.

    Truscott M, Islam AB, Frolov MV. Novel regulation and functional interaction of polycistronic miRNAs. Rna 2016; 22: 129-138. https://doi.org/10.1261/rna.053264.115 PMid:26554028 PMCid:PMC4691827.

  • 14.

    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126-139. https://doi.org/10.1038/nrm2632 PMid:19165215.

  • 15.

    Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol 2010; 17: 1169-1174. https://doi.org/10.1038/nsmb.1921 PMid:20924405.

  • 16.

    Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 2006; 103: 2746-2751. https://doi.org/10.1073/pnas.0511045103 PMid:16477010 PMCid:PMC1413820##.

  • 17.

    Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A 2007; 104: 8346-8351. https://doi.org/10.1073/pnas.0701883104 PMid:17483452 PMCid:PMC1864911.

  • 18.

    Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014. 2014. https://doi.org/10.1155/2014/970607 PMid:25180174 PMCid:PMC4142390.

  • 19.

    Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17: 1712. https://doi.org/10.3390/ijms17101712 PMid:27754357 PMCid:PMC5085744.

  • 20.

    Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 2015; 25: 137-147. https://doi.org/10.1016/j.tcb.2014.11.004 PMid:25484347 PMCid:PMC4344861.

  • 21.

    Qavi AJ, Kindt JT, Bailey RC. Sizing up the future of microRNA analysis. Anal Bioanal Chem 2010; 398: 2535-2549. https://doi.org/10.1007/s00216-010-4018-8 PMid:20680616 PMCid:PMC2965821.

  • 22.

    Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004; 5: R68. https://doi.org/10.1186/gb-2004-5-9-r68 PMid:15345052 PMCid:PMC522875.

  • 23.

    Lundstrom K. Micro-RNA in disease and gene therapy. Curr Drug Discover Technol 2011; 8: 76-86. https://doi.org/10.2174/157016311795563857 PMid:21513487.

  • 24.

    Rusek AM, Abba M, Eljaszewicz A, Moniuszko M, Niklinski J, Allgayer H. MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer. Mol Cancer 2015; 14: 34. https://doi.org/10.1186/s12943-015-0302-8 PMid:25743773 PMCid:PMC4333888.

  • 25.

    Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2015; 24: 1-10. https://doi.org/10.1159/000369101 PMid:25471398 PMCid:PMC5588216.

  • 26.

    O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 2011; 34: 185-204. https://doi.org/10.1146/annurev-neuro-061010-113613 PMid:21456963 PMCid:PMC3174086.

  • 27.

    Nunomura A, Castellani RJ, Lee HG, Moreira PI, Zhu X, Perry G, Smith MA. Neuropathology in Alzheimer's disease: awaking from a hundred-year-old dream. Sci Aging Knowledge Environ 2006; 8: pe10. https://doi.org/10.1126/sageke.2006.8.pe10 PMid:16672726.

  • 28.

    Sadigh-Eteghad S, Talebi M, Farhoudi M. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer's disease. A meta-analysis. Neurosciences (Riyadh) 2012; 17: 321-326.

  • 29.

    Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid clearance in Alzheimer's disease. Alzheimer's Res Ther 2013; 5: 1-6. https://doi.org/10.1186/alzrt187 PMid:23849219 PMCid:PMC3978761.

  • 30.

    Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL. The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing Res Rev 2013; 12: 757-763. https://doi.org/10.1016/j.arr.2013.03.002 PMid:23528367 PMCid:PMC3735866.

  • 31.

    Davidowitz EJ, Chatterjee I, Moe JG. Targeting tau oligomers for therapeutic development for Alzheimer's disease and tauopathies. Biotechnology 2008; 4: 47-64.

  • 32.

    Sanabria-Castro A, Alvarado-Echeverra I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci 2017; 24: 46-54. https://doi.org/10.1159/000464422 PMid:28588356 PMCid:PMC5448443.

  • 33.

    Bue L, Bussire T, Bue-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 2000; 33: 95-130. https://doi.org/10.1016/S0165-0173(00)00019-9.

  • 34.

    Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. A immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 2004; 43: 321-332. https://doi.org/10.1016/j.neuron.2004.07.003 PMid:15294141.

  • 35.

    Blurton-Jones M, LaFerla FM. Pathways by which A facilitates tau pathology. Curr Alzheimer Res 2006; 3: 437-448. https://doi.org/10.2174/156720506779025242 PMid:17168643.

  • 36.

    Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007; 18: 297-300. https://doi.org/10.1097/WNR.0b013e3280148e8b PMid:17314675.

  • 37.

    Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer's Dis 2008; 14: 27-41. https://doi.org/10.3233/JAD-2008-14103 PMid:18525125.

  • 38.

    Hbert SS, Horr K, Nicola L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/-secretase expression. Proc Natl Acad Sci U S A 2008; 105: 6415-6420. https://doi.org/10.1073/pnas.0710263105 PMid:18434550 PMCid:PMC2359789.

  • 39.

    Patel N, oang D, Miller N, Ansaloni S, Huang Q, Rogers JT, et al. MicroRNAs can regulate human APP levels. Mol Neurodegener 2008; 3: 1-6. https://doi.org/10.1186/1750-1326-3-10 PMid:18684319 PMCid:PMC2529281.

  • 40.

    Hbert SS, Horr K, Nicola L, Bergmans B, Papadopoulou AS, Delacourte A, Strooper BD. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis 2009; 33: 422-428. https://doi.org/10.1016/j.nbd.2008.11.009 PMid:19110058.

  • 41.

    Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid- precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012; 287: 31298-31310. https://doi.org/10.1074/jbc.M112.366336 PMid:22733824 PMCid:PMC3438960.

  • 42.

    Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of -site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28: 1213-1223. https://doi.org/10.1523/JNEUROSCI.5065-07.2008 PMid:18234899 MCid:PMC2837363.

  • 43.

    Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. J Alzheimer's Dis 2010; 21: 75-79. https://doi.org/10.3233/JAD-2010-091603 PMid:20413881 PMCid:PMC2910235.

  • 44.

    Shu B, Zhang X, Du G, Fu Q, Huang L. MicroRNA-107 prevents amyloid--induced neurotoxicity and memory impairment in mice. Int J Mol Med 2018; 41: 1665-1672. https://doi.org/10.3892/ijmm.2017.3339.

  • 45.

    Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids 2014; 3: e177. https://doi.org/10.1038/mtna.2014.29 PMid:25050825 PMCid:PMC4121518.

  • 46.

    Garza-Manero S, Arias C, Bermdez-Rattoni F, Vaca L, Zepeda A. Identification of age-and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Front Cell Neurosci 2015; 9: 53. https://doi.org/10.3389/fncel.2015.00053 PMid:25745387 PMCid:PMC4333818.

  • 47.

    Maciotta Rolandin S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7: 265. https://doi.org/10.3389/fncel.2013.00265 PMid:24391543 PMCid:PMC3867638.

  • 48.

    Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, et al. microRNA-132/212 deficiency enhances A production and senile plaque deposition in Alzheimer's disease triple transgenic mice. Sci Rep 2016; 6: 1-11. https://doi.org/10.1038/srep30953 PMid:27484949 PMCid:PMC4971468.

  • 49.

    Wang M, Qin L, Tang B. MicroRNAs in Alzheimer's disease. Front Genet 2019; 10: 153. https://doi.org/10.3389/fgene.2019.00153 PMid:30881384 PMCid:PMC6405631.

  • 50.

    Kao YC, Wang I, Tsai KJ. miRNA-34c overexpression causes dendritic loss and memory decline. Int J Mol Sci 2018; 19: 2323. https://doi.org/10.3390/ijms19082323 PMid:30096777 PMCid:PMC6121231.

  • 51.

    Ross SP, Baker KE, Fisher A, Hoff L, Pak ES, Murashov AK. miRNA-431 prevents amyloid--induced synapse loss in neuronal cell culture model of Alzheimer's disease by silencing kremen1. Front Cell Neurosci 2018; 12: 87. https://doi.org/10.3389/fncel.2018.00087 PMid:29643768 PMCid:PMC5883862.

  • 52.

    Pichler S, Gu W, Hartl D, Gasparoni G, Leidinger P, Keller A, et al. The miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging 2017; 50: 167. e1-167. e10. https://doi.org/10.1016/j.neurobiolaging.2016.09.019 PMid:27816213.

  • 53.

    Zhu L, Li J, Dong N, Guan F, Liu Y, Ma D, Goh EL, Chen T. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci Rep 2016; 6: 1-13. https://doi.org/10.1038/srep36993 PMid:27869204 PMCid:PMC5116666.

  • 54.

    Wu Q, Ye X, Xiong Y, Zhu H, Miao J, Zhang W, Wan J. The protective role of microRNA-200c in Alzheimer's disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci 2016; 9: 140. https://doi.org/10.3389/fnmol.2016.00140 PMid:28008308 PMCid:PMC5143617.

  • 55.

    Arena A, Iyer AM, Milenkovic I, Kovacs GG, Ferrer I, Perluigi M, Aronica E. Developmental expression and dysregulation of miR-146a and miR-155 in Down's syndrome and mouse models of Down's syndrome and Alzheimer's disease. Curr Alzheimer Res 2017; 14: 1305-1317. https://doi.org/10.2174/1567205014666170706112701 PMid:28720071.

  • 56.

    Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X, Dickey CA. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J Biol Chem 2016; 291: 17897-17906. https://doi.org/10.1074/jbc.M116.727941 PMid:27334923 PMCid:PMC5016178.

  • 57.

    Ghasemi-Kasman M, Shojaei A, Gol M, Moghadamnia AA, Baharvand H, Javan M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer's disease. Mol Cell Neurosci 2018; 86: 50-57. https://doi.org/10.1016/j.mcn.2017.11.012 PMid:29174617.

  • 58.

    Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: an integrative review. Prog Neurobiol 2017; 156: 1-68. https://doi.org/10.1016/j.pneurobio.2017.03.004 PMid:28322921.

  • 59.

    Tiribuzi R, Crispoltoni L, Porcellati S, Lullo MD, Florenzano F, Pirro M, et al. miR128 up-regulation correlates with impaired amyloid (1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol Aging 2014; 35: 345-356. https://doi.org/10.1016/j.neurobiolaging.2013.08.003 PMid:24064186.

  • 60.

    Zhao Y, Jaber V, Lukiw WJ. Over-expressed pathogenic miRNAs in Alzheimer's disease (AD) and prion disease (PrD) drive deficits in TREM2-mediated A42 peptide clearance. Front Aging Neurosci 2016; 8: 140. https://doi.org/10.3389/fnagi.2016.00140 PMid:27378912 PMCid:PMC4906923.

  • 61.

    Zhou Y, Deng J, Chu X, Zhao Y, Guo Y. Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer's disease. J Alzheimer's Dis 2019; 67: 571-581. https://doi.org/10.3233/JAD-181053 PMid:30584150.

  • 62.

    Li J, Chen W, Yi Y, Tong Q. miR2195p inhibits tau phosphorylation by targeting TTBK1 and GSK3 in Alzheimer's disease. J Cell Biochem 2019; 120: 9936-9946. https://doi.org/10.1002/jcb.28276 PMid:30556160.

  • 63.

    Hernandez-Rapp J, Smith PY, Filali M, Goupil C, Planel E, Magill ST, et al. Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 2015; 287: 15-26. https://doi.org/10.1016/j.bbr.2015.03.032 PMid:25813747.

  • 64.

    Jafari A, Noursadeghi E, Eliassi A. Altered activity and expression of rat brain mitochondrial ATP-sensitive potassium channel in an A-treated model of Alzheimer's disease. 2015.

  • 65.

    Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Gazor R, Rostampour M, Khakpour Taleghani B. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020; 394: 112814. https://doi.org/10.1016/j.bbr.2020.112814 PMid:32707137.

  • 66.

    Rashtiani S, Goudarzi I, Jafari A, Rohampour K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci Lett 2021; 749: 135721. https://doi.org/10.1016/j.neulet.2021.135721 PMid:33582189.

  • 67.

    Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer's disease. Mol Neurobiol 2019; 56: 6156-6167. https://doi.org/10.1007/s12035-019-1500-y PMid:30734227 PMCid:PMC6682547.

  • 68.

    Masoodi TA, Al Shammari SA, Al-Muammar MN, Alhamdan AA. Screening and evaluation of deleterious SNPs in APOE gene of Alzheimer's disease. Neurol Res Int 2012; 2012: 480609. https://doi.org/10.1155/2012/480609 PMid:22530123 PMCid:PMC3317072.

  • 69.

    Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, Harold D, et al. The role of variation at APP, PSEN1, PSEN2, and MAPT in late onset Alzheimer's disease. J Alzheimer's Dis 2012; 28: 377-387. https://doi.org/10.3233/JAD-2011-110824 PMid:22027014 PMCid:PMC4118466.

  • 70.

    Hudson G, Sims R, Harold D, Chapman J, Hollingworth P, Gerrish A, et al. No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology 2012; 78: 1038-1042. https://doi.org/10.1212/WNL.0b013e31824e8f1d PMid:22442439 PMCid:PMC3317529.

  • 71.

    Fia IG, Enciu AM, Stnoiu B. New insights on Alzheimer's disease diagnostic. RomJMorphol Embryol 2011; 52: 975-979.

  • 72.

    Cressatti M, Juwara L, Galindez JM, Velly AM, Nkurunziza ES, Marier S, et al. Salivary microR153 and microR223 levels as potential diagnostic biomarkers of idiopathic Parkinson's disease. Mov Disord 2020; 35: 468-477. https://doi.org/10.1002/mds.27935 PMid:31800144.

  • 73.

    Wu HZ, Ong KL, Seeher K, Armstrong NJ, Thalamuthu A, Brodaty H, et al. Circulating microRNAs as biomarkers of Alzheimer's disease: a systematic review. J Alzheimer's Dis 2016; 49: 755-766. https://doi.org/10.3233/JAD-150619 PMid:26484928.

  • 74.

    Zhang M, Han W, Xu Y, Li D, Xue Q. Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer's disease. Neuropsychiatr Dis Treat 2021; 17: 269. https://doi.org/10.2147/NDT.S290925 https://doi.org/10.2147/NDT.S306151.

  • 75.

    Wang R, Zhang J. Clinical significance of miR-433 in the diagnosis of Alzheimer's disease and its effect on A-induced neurotoxicity by regulating JAK2. Exp Gerontol 2020; 141: 111080. https://doi.org/10.1016/j.exger.2020.111080 PMid:32871216.

  • 76.

    Yang Q, Zhao Q, Yin Y. miR 133b is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role. Exper Ther Med 2019; 18: 2711-2718. https://doi.org/10.3892/etm.2019.7855 PMid:31572518 PMCid:PMC6755445.

  • 77.

    Kou X, Chen D, Chen N. The regulation of microRNAs in Alzheimer's disease. Front Neurol 2020; 11. https://doi.org/10.3389/fneur.2020.00288 PMid:32362867 PMCid:PMC7180504.