Clinical application of gut microbiota metabolites: A novel opportunity in personalized medicine

authors:

avatar Zahra Hoseini Tavassol , avatar Hanieh-Sadat Ejtahed , * , avatar Ahmadreza Soroush , avatar Arefeh Shahriari , avatar Seyed Davar Siadat ORCID , avatar Shirin Hasani Ranjbar , avatar Shekoufeh Nikfar ORCID , avatar Bagher Larijani


how to cite: Hoseini Tavassol Z, Ejtahed H, Soroush A, Shahriari A, Siadat S D, et al. Clinical application of gut microbiota metabolites: A novel opportunity in personalized medicine. koomesh. 2022;24(2):e152661. 

Abstract

Nowadays, metabolomics studies are performed with different approaches to identify biomarkers, clarify the underlying mechanisms of diseases and achieve novel treatment strategies. In this context, gut microbiota-derived metabolites are known as one of the most important mediators of gut microbiota effects on human health and various diseases. Due to the inefficiency of conventional therapies in some cases, personalized medicine is of great clinical importance. Recent studies have shown that alterations in gut microbiota metabolites like short-chain fatty acids (SCFAs), amino acids, bile acid metabolites, and choline metabolites can link gut microbiota to numerous chronic non-communicable diseases including obesity, diabetes, inflammatory bowel diseases, psychological disorders, cardiovascular diseases and cancers. Understanding the composition of gut microbiota and the relationship between its derived-metabolites and the occurrence of various diseases is necessary to achieve new clinical applications. Furthermore, potential therapeutic agents such as prebiotic supplements and next-generation probiotics, dietary interventions, antibiotics, and fecal microbiota transplantation (FMT) could be among the leading strategies for personalized medicine in prognosis, diagnosis and treatment of various diseases, via modulating the diversity and composition of gut microbiota and its metabolites

References

  • 1.

    Idle JR, Gonzalez FJ. Metabolomics. Cell Metab 2007; 6: 348-351.

  • 2.

    Li B, He X, Jia W, Li H. Novel applications of metabolomics in personalized medicine: a mini-review. Molecules 2017; 22: 1173.

  • 3.

    Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, et al. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 2018; 8: 314.

  • 4.

    Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Rad FR, et al. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144: 104200.

  • 5.

    Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 1-15.

  • 6.

    Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res 2016; 48: 349-358.

  • 7.

    Koen N, Du Preez I. Metabolomics and personalized medicine. Adv Protein Chem Struct Biol 2016; 102: 53-78.

  • 8.

    Hasani-Ranjbar S, Larijani B. Human Microbiome as an approach to personalized medicine. Altern Ther Health Med 2017; 23: 8-9.

  • 9.

    Agus A, Clment K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2020.

  • 10.

    Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7: 2930-2946.

  • 11.

    Chen MX, Wang SY, Kuo CH, Tsai IL. Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc 2019; 118: S10-S22.

  • 12.

    Parada Venegas D, De la Fuente MK, Landskron G, Gonzlez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.##https://doi.org/10.3389/fimmu.2019.01486.

  • 13.

    Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 2013; 9: 818-827.

  • 14.

    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PloS One 2011; 6: e25792.

  • 15.

    Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46: 512-521.

  • 16.

    Kim CH. Microbiota or short-chain fatty acids: which regulates diabetes? Cell Mol Immunol 2018; 15: 88-91.

  • 17.

    Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm 2014; 2014: 162021.

  • 18.

    Doestzada M, Vila AV, Zhernakova A, Koonen DP, Weersma RK, Touw DJ, et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell 2018; 9: 432-445.

  • 19.

    Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vila AV, Vsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019; 51: 600-605.

  • 20.

    Behrouzi A, Nafari AH, Siadat SD. The significance of microbiome in personalized medicine. Clin Transl Med 2019; 8: 16.

  • 21.

    Christensen L, Roager HM, Astrup A, Hjorth MF. Microbial enterotypes in personalized nutrition and obesity management. Am J Clin Nutr 2018; 108: 645-651.

  • 22.

    Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7: 198-206.

  • 23.

    Scheppach W, Sommer H, Kirchner T, Paganelli G-M, Bartram P, Christl S, et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 51-56.

  • 24.

    Harig JM, Soergel KH, Komorowski RA, Wood CM. Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 1989; 320: 23-28.

  • 25.

    Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 1.

  • 26.

    Kauna-Czapliska J, Gtarek P, Chirumbolo S, Chartrand MS, Bjrklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr 2019; 59: 72-88.

  • 27.

    Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018; 23: 716-724.

  • 28.

    Yu M, Mu C, Yang Y, Zhang C, Su Y, Huang Z, et al. Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids 2017; 49: 1587-1599.

  • 29.

    Mu C, Yang Y, Yu K, Yu M, Zhang C, Su Y, et al. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids 2017; 49: 771-781.

  • 30.

    O'Mahony SM, Clarke G, Borre Y, Dinan T, Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2015; 277: 32-48.

  • 31.

    Gao K, Pi Y, Mu CL, Farzi A, Liu Z, Zhu WY. Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: aromatic amino acids linking the microbiota-brain axis. J Neurochemistry 2019; 149: 641-659.

  • 32.

    Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY. Antibioticsinduced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochemistry 2018; 146: 219-234.

  • 33.

    Marcobal A, Kashyap P, Nelson T, Aronov P, Donia M, Spormann A, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 2013; 7: 1933-1943.

  • 34.

    Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014; 16: 495-503.

  • 35.

    Krishnan S, Ding Y, Saeidi N, Choi M, Sridharan GV, Sherr DH, et al. Erratum: gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 2019; 28: 3285.

  • 36.

    Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 2018; 8: 13.

  • 37.

    Whitfield-Cargile CM, Cohen ND, Chapkin RS, Weeks BR, Davidson LA, Goldsby JS, et al. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes 2016; 7: 246-261.

  • 38.

    Jennis M, Cavanaugh C, Leo G, Mabus J, Lenhard J, Hornby P. Microbiotaderived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil 2018; 30: e13178.

  • 39.

    Mondanelli G, Orecchini E, Volpi C, Panfili E, Belladonna ML, Pallotta MT, et al. Effect of probiotic administration on serum tryptophan metabolites in pediatric type 1 diabetes patients. Int J Tryptophan Res 2020; 13: 1178646920956646.

  • 40.

    Galligan J. Beneficial actions of microbiotaderived tryptophan metabolites. Neurogastroenterol Motil 2018; 30: e13283.

  • 41.

    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22: 586-597.

  • 42.

    Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of gut dysbiosis on neurohormonal pathways in chronic Kidney Disease. Diseases 2019; 7: 21.

  • 43.

    Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med. 2020; 52: 1-16.

  • 44.

    Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019; 25: 968-976.

  • 45.

    Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discover 2016; 15: 473.

  • 46.

    Tian Y, Gui W, Koo I, Smith PB, Allman EL, Nichols RG, et al. The microbiome modulating activity of bile acids. Gut Microb 2020; 1-18.

  • 47.

    Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30: 332.

  • 48.

    Jiao N, Loomba R, Yang ZH, Wu D, Fang S, Bettencourt R, et al. Alterations in bile acid metabolizing gut microbiota and specific bile acid genes as a precision medicine to subclassify NAFLD. Physiol Genomics 2021; 53: 336-348.

  • 49.

    Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RM, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 2019; 7: 75.

  • 50.

    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499: 97-101.

  • 51.

    Janeiro MH, Ramrez MJ, Milagro FI, Martnez JA, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 2018; 10: 1398.

  • 52.

    Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 2016; 8: 326.

  • 53.

    Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and metaanalysis of prospective studies. J Am Heart Assoc 2017; 6: e004947.

  • 54.

    Zhuang R, Ge X, Han L, Yu P, Gong X, Meng Q, et al. Gut microbe-generated metabolite trimethylamine Noxide and the risk of diabetes: A systematic review and doseresponse metaanalysis. Obesit Rev 2019; 20: 883-894.

  • 55.

    Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017; 5: 1-14.

  • 56.

    Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 2015; 6.

  • 57.

    Landfald B, Valeur J, Berstad A, Raa J. Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microb Ecol Health Dis 2017; 28: 1327309.

  • 58.

    LeBlanc JG, Milani C, De Giori GS, Sesma F, Van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013; 24: 160-168.

  • 59.

    Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin 2011; 91: 771-785.

  • 60.

    Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 2014; 20: 769-778.

  • 61.

    Luthold RV, Fernandes GR, Franco-de-Moraes AC, Folchetti LG, Ferreira SRG. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism 2017; 69: 76-86.

  • 62.

    Mach N, Clark A. Micronutrient deficiencies and the human gut microbiota. Trends Microbiol 2017; 25: 607-610.

  • 63.

    Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 2016; 167: 457-470. e13.

  • 64.

    Fernndez-Veledo S, Vendrell J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Rev Endoc Metab Disord 2019; 20: 439-447.

  • 65.

    Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev 2019; 38: 221-238.

  • 66.

    Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 2015; 74: 13-22.

  • 67.

    Tebani A, Bekri S. Paving the way to precision nutrition through metabolomics. Front Nutr 2019; 6: 41.

  • 68.

    Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Exp Opin Drug Metab Toxicol 2016; 12: 31-40.

  • 69.

    Kang MJ, Kim HG, Kim JS, Oh DG, Um YJ, Seo CS, et al. The effect of gut microbiota on drug metabolism. Exp Opin Drug Metab Toxicol 2013; 9: 1295-1308##.