Role of personalized medicine in cardiovascular disease: A narrative review

authors:

avatar Ali Sheikhy , avatar Mandana Hasanzad , avatar Shekoufeh Nikfar ORCID , avatar Kaveh Hosseini , avatar Masih Tajdini , *


How To Cite Sheikhy A, Hasanzad M, Nikfar S, Hosseini K, Tajdini M. Role of personalized medicine in cardiovascular disease: A narrative review. koomesh. 2022;24(2):e152662. 

Abstract

Cardiovascular diseases are the leading cause of mortality each year. Both environmental and genetic risk factors significantly influence the incidence and progression of these diseases. In recent decades, with the development of genetics and genome-determining tools, different genes have been found associated with numerous diseases. Determining these genes helps us to suggest a more effective treatment, specifically for each individual. Determining the genes involved in each disease, finding them in patients, and finally, treatment based on them are the main goals of personalized medicine. Another achievement of personalized medicine is determining the drug;#39s efficiency and side effects in individuals. In particular, one of the most common drug side effects is bleeding from Warfarin. This complication can be prevented by accurately determining the required dose in each person. Personalized medicine is able to suggest the most appropriate dose by identifying genes involved in drug metabolism and detecting them in patients. In this review study, we examine the genes involved in cardiovascular disease as well as the drugs used in this field. Personalized medicine has a special role in determining the prognosis, risk factors and the most effective type of treatment for each disease. One of the main challenges in this field is finding precise diagnostic tools to find the most accurate gene and determine the patients who can benefit most from personalized medicine.

References

  • 1.

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459-544.

  • 2.

    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015; 131: e29-322.

  • 3.

    Farzandipour M, Farrokhian A, Nabovati E, Mirali K, Anvari Tafti S, Rajabi Moghadam H. Smartphone-based application for training outpatient cardiac rehabilitation: Design and usability evaluation. Koomesh 2020; 22: 686-695. (Persian).

  • 4.

    Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril 2018; 109: 952-963.

  • 5.

    Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J 2016; 37: 561-7.

  • 6.

    Piquette-Miller M, Grant DM. The art and science of personalized medicine. Clini Pharmacol Ther 2007; 81: 311-315.

  • 7.

    Shaw K, Amstutz U, Kim RB, Lesko LJ, Turgeon J, Michaud V, et al. Clinical practice recommendations on genetic testing of CYP2C9 and VKORC1 variants in warfarin therapy. Ther Drug Monit 2015; 37: 428-36.

  • 8.

    Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther 2017; 102: 397-404.

  • 9.

    Benn M, Nordestgaard BG. From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardiovasc Res 2018; 114: 1192-1208.

  • 10.

    Ma Z, Cheng G, Wang P, Khalighi B, Khalighi K. Clinical Model for Predicting Warfarin Sensitivity. Sci Rep 2019; 9: 12856.

  • 11.

    Ministry of Health and Medical Education PRaIC. Death of two patient with new coronavirus in Qom. Tehran: MoHME 2020. (Persian).

  • 12.

    Wu S, Chen X, Jin DY, Stafford DW, Pedersen LG, Tie JK. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Blood 2018; 132: 647-657.

  • 13.

    Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251-263.

  • 14.

    Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753-764.

  • 15.

    Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106-4112.

  • 16.

    Danese E, Montagnana M, Johnson JA, Rettie AE, Zambon CF, Lubitz SA, et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther 2012; 92: 746-756.

  • 17.

    Ajami S, Mohammadi M. Telemedicine against CoVID-19 crisis. Health Policy Technol 2020.

  • 18.

    Jiang XL, Samant S, Lesko LJ, Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet 2015; 54: 147-166.

  • 19.

    Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. 2010;69(3):222-230.

  • 20.

    Dean L. Clopidogrel therapy and CYP2C19 genotype. 2012 Mar 8 [Updated 2018 Apr 18]. In: Pratt VM SS, Pirmohamed M, et al., editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK84114/.

  • 21.

    Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013; 94: 317-323.

  • 22.

    Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs 2008; 8: 373-3418.

  • 23.

    Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 2014; 96: 423-428.

  • 24.

    Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med 2016; 9: 97-106.

  • 25.

    Elens L, Becker ML, Haufroid V, Hofman A, Visser LE, Uitterlinden AG, et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet Genomics 2011; 21: 861-866.

  • 26.

    Williams DG, Olsen EG. Prevalence of overt dilated cardiomyopathy in two regions of England. Br Heart J 1985; 54: 153-155.

  • 27.

    Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation 2013; 128: 2813-2851.

  • 28.

    Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J 1958; 20: 1-8.

  • 29.

    Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990; 62: 999-1006.

  • 30.

    Martiniuk F, Mehler M, Pellicer A, Tzall S, La Badie G, Hobart C, et al. Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc Natl Acad Sci U S A 1986; 83: 9641-9644.

  • 31.

    Taylor MR, Ku L, Slavov D, Cavanaugh J, Boucek M, Zhu X, et al. Danon disease presenting with dilated cardiomyopathy and a complex phenotype. J Hum Genet 2007; 52: 830-835.

  • 32.

    Ochoa JP, Sabater-Molina M, Garca-Pinilla JM, Mogensen J, Restrepo-Crdoba A, Palomino-Doza J, et al. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol 2018; 72: 2457-2467.

  • 33.

    Mazzarotto F, Girolami F, Boschi B, Barlocco F, Tomberli A, Baldini K, et al. Defining the diagnostic effectiveness of genes for inclusion in panels: the experience of two decades of genetic testing for hypertrophic cardiomyopathy at a single center. Genet Med 2019; 21: 284-292.

  • 34.

    Prondzynski M, Mearini G, Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflugers Arch 2019; 471: 807-815.

  • 35.

    Muchtar E, Blauwet LA, Gertz MA. Restrictive Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121: 819-837.

  • 36.

    Miles CJ, Behr ER. The role of genetic testing in unexplained sudden death. Transl Res 2016; 168: 59-73.

  • 37.

    Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013; 10: 1932-1963.

  • 38.

    Keating MT, Sanguinetti MC. Molecular genetic insights into cardiovascular disease. Science 1996; 272: 681-685.

  • 39.

    Abu-Zeitone A, Peterson DR, Polonsky B, McNitt S, Moss AJ. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol 2014; 64: 1352-1358.

  • 40.

    Mazzanti A, Maragna R, Faragli A, Monteforte N, Bloise R, Memmi M, et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol 2016; 67: 1053-1058.

  • 41.

    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992; 20: 1391-1396.

  • 42.

    Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol 2013; 10: 571-583.

  • 43.

    Gray B, Behr ER. New insights into the genetic basis of inherited arrhythmia syndromes. Circ Cardiovasc Genet 2016; 9: 569-577.

  • 44.

    Jones PD, Webb TR. From GWAS to new biology and treatments in CAD. Aging (Albany NY) 2019; 11: 1611-1612.

  • 45.

    MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508: 469-476.

  • 46.

    Lehrman MA, Schneider WJ, Sdhof TC, Brown MS, Goldstein JL, Russell DW. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 1985; 227: 140-146.

  • 47.

    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Eng J Med 2007; 357: 443-453.

  • 48.

    Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47: 1121-1130.

  • 49.

    Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 2017; 18: 331-344.

  • 50.

    Shahrabi S, Mansournezhad S, Azizidoost S, Jorfi F, Saki N. Challenges for treatment of cardiovascular diseases based on stem cells. Koomesh 2019; 21: 395-407. (Persian).##.