Pharmacogenomic approach in type 2 diabetes treatment

authors:

avatar Negar Sarhangi , avatar Fatemeh Rahbar , avatar Mandana Hasanzad ORCID , *


How To Cite Sarhangi N, Rahbar F, Hasanzad M. Pharmacogenomic approach in type 2 diabetes treatment. koomesh. 2022;24(2):e152666. 

Abstract

Introduction: Type 2 diabetes (T2D) is chronic health caused by the interaction between genetic and environmental factors that results in high blood glucose. The evidence-based guidelines for diabetes management are mainly based on lifestyle changes, control of risk factors, and the management of blood glucose levels. Although numerous antidiabetic agents have been developed over time, T2D treatment should be based on the patient;#39s genomic characteristics. In the present study, we review genetic variations that may be responsible for a common therapeutic response in diabetes. Materials and Methods: The treatment of T2D is discussed in the perspective of a pharmacogenomic approach by searching for related studies on PubMed, Scopus, Web of Sciences (WoS), and Scholar databases. Results: Among the antidiabetic drugs used in T2D treatment, the association of six drugs, including metformin, sulfonylurea, meglitinide, DPP4 inhibitors, SGLT-2 inhibitors, and Thiazolidinedione;#39s with commonly related genes in responding to the drugs was found among the studies. Conclusion: Pharmacogenomics studies investigate the role of genomic variations in drug efficacy and toxicity. The finding of genetic factors that modulate the glycemic response may provide a new way to T2D treatment and may ultimately advance the development of precision medicine therapy. Early diagnosis and appropriate treatment can reduce the severity of diabetes and its related complications.

References

  • 1.

    Hsia D. Standards of medical care in diabetes 2015: Summary of revisions. Diabet Care 2015; 38.

  • 2.

    Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen M-R, Lyssenko V, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011; 54: 2811-2819.

  • 3.

    Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 2016; 12: 337.

  • 4.

    Group DS, Group EDE. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 2001; 161: 397-405.

  • 5.

    Glauber H, Karnieli E. Preventing type 2 diabetes mellitus: a call for personalized intervention. Perm J 2013; 17: 74.

  • 6.

    Pearson E. Personalized medicine in diabetes: the role of 'omics' and biomarkers. Diabetic Med 2016; 33: 712-717.

  • 7.

    Grant RW, Wexler DJ. Personalized medicine in Type 2 diabetes: what does the future hold? Diabetes Manag (Lond) 2012; 2: 199.

  • 8.

    Holt R. Personalised medicine for diabetes: a special issue. Diabetic Med 2016; 33: 711.

  • 9.

    Ashley EA. Towards precision medicine. Nat Rev Genet 2016; 17: 507.

  • 10.

    Rich SS, Cefalu WT. The impact of precision medicine in diabetes: a multidimensional perspective. Diabetes Care 2016; 39: 1854-1857.

  • 11.

    Rich SS. Mapping genes in diabetes: genetic epidemiological perspective. Diabetes 1990; 39: 1315-1319.##https://doi.org/10.2337/diab.39.11.1315.

  • 12.

    Langenberg C, Lotta LA. Genomic insights into the causes of type 2 diabetes. Lancet 2018; 391: 2463-2474.

  • 13.

    Bailey C. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther 2015; 98: 170-184.

  • 14.

    Mizzi C, Peters B, Mitropoulou C, Mitropoulos K, Katsila T, Agarwal MR, et al. Personalized pharmacogenomics profiling using whole-genome sequencing. Pharmacogenomics 2014; 15: 1223-1234.

  • 15.

    Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2014; 2: 481-487.

  • 16.

    Spiegel AM, Hawkins M. 'Personalized medicine'to identify genetic risks for type 2 diabetes and focus prevention: can it fulfill its promise? Health Aff 2012; 31: 43-49.

  • 17.

    Liao W-L, Tsai F-J. Personalized medicine in type 2 diabetes. BioMedicine 2014; 4.

  • 18.

    Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013; 23: 154-171.

  • 19.

    Wang D-S, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302: 510-515.

  • 20.

    Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney AS, Leese G, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 2009; 58: 1434-1439.

  • 21.

    Becker ML, Visser LE, Van Schaik RH, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 2009; 58: 745-749.

  • 22.

    Zhou K, Yee SW, Seiser EL, Van Leeuwen N, Tavendale R, Bennett AJ, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genet 2016; 48: 1055-1059.

  • 23.

    Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Investig 2007; 117: 1422-1431.

  • 24.

    Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes 2015; 64: 1786-1793.

  • 25.

    Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genet 2011; 43: 117.

  • 26.

    Lpez-Bermejo A, Daz M, Morn E, De Zegher F, Ibez L. A single nucleotide polymorphism in STK11 influences insulin sensitivity and metformin efficacy in hyperinsulinemic girls with androgen excess. Diabetes Care 2010; 33: 1544-1548.

  • 27.

    Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 737-754.

  • 28.

    Avery P, Mousa SS, Mousa SA. Pharmacogenomics in type II diabetes mellitus management: Steps toward personalized medicine. Pharmgenomics Pers Med 2009; 2: 79.

  • 29.

    Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivist KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72: 326-332.

  • 30.

    Hwang YC. Sulfonylurea: personalized medicine for type 2 diabetes. Endocrinol Metab 2015; 30: 467-468.

  • 31.

    Kleinberger JW, Pollin TI. Personalized medicine in diabetes mellitus: current opportunities and future prospects. Ann N Y Acad Sci 2015; 1346: 45.

  • 32.

    Loganadan N, Huri H, Vethakkan S, Hussein Z. Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation. Pharmacogenomics J 2016; 16: 209-219.

  • 33.

    Chen M, Hu C, Jia W. Pharmacogenomics of glinides. Pharmacogenomics 2015; 16: 45-60.

  • 34.

    Glamolija U, Jevri-auevi A. Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics. Acta Pharmaceutica 2010; 60: 387-406.

  • 35.

    Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmller J. Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs. Clin Pharmacokinet 2005; 44: 1209-1225.

  • 36.

    Chon S, Gautier JF. An update on the effect of incretin-based therapies on -cell function and mass. Diabetes Metab J 2016; 40: 99.

  • 37.

    Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 2011; 124: S3-S18.

  • 38.

    M't Hart L, Fritsche A, Nijpels G, van Leeuwen N, Donnelly LA, Dekker JM, et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 2013; 62: 3275-3281.

  • 39.

    Zimdahl H, Ittrich C, Graefe-Mody U, Boehm BO, Mark M, Woerle H-J, et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia 2014; 57: 1869-1875.

  • 40.

    Tnjes A, Kovacs P. SGLT2: a potential target for the pharmacogenetics of Type 2 diabetes? Pharmacogenomics 2013; 14: 825-833.

  • 41.

    Dawed AY, Zhou K, Pearson ER. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharmgenomics Pers Med 2016; 9: 17.

  • 42.

    Francke S, Mamidi RN, Solanki B, Scheers E, Jadwin A, Favis R, et al. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J Clinical Pharmacol 2015; 55: 1061-1072.

  • 43.

    Zimdahl H, Haupt A, Brendel M, Bour L, Machicao F, Salsali A, et al. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenet Genomics 2017; 27: 135-142.

  • 44.

    Della-Morte D, Palmirotta R, Rehni AK, Pastore D, Capuani B, Pacifici F, et al. Pharmacogenomics and pharmacogenetics of thiazolidinediones: role in diabetes and cardiovascular risk factors. Pharmacogenomics 2014; 15: 2063-2082.

  • 45.

    Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7: 302.

  • 46.

    Aquilante CL, Bushman LR, Knutsen SD, Burt LE, Rome LC, Kosmiski LA. Influence of SLCO1B1 and CYP2C8 gene polymorphisms on rosiglitazone pharmacokinetics in healthy volunteers. Hum Genomics 2008; 3: 1-10.

  • 47.

    Hsieh MC, Lin KD, Tien KJ, Tu ST, Hsiao JY, Chang SJ, et al. Common polymorphisms of the peroxisome proliferator-activated receptor- (Pro12Ala) and peroxisome proliferator-activated receptor- coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. Metabolism 2010; 59: 1139-1144.

  • 48.

    Sun H, Gong ZC, Yin JY, Liu HL, Liu YZ, Guo ZW, et al. The association of adiponectin allele 45T/G and 11377C/G polymorphisms with type 2 diabetes and rosiglitazone response in Chinese patients. Br J Clin Pharmacol 2008; 65: 917-926.

  • 49.

    Liu HL, Lin YG, Wu J, Sun H, Gong ZC, Hu PC, et al. Impact of genetic polymorphisms of leptin and TNF- on rosiglitazone response in Chinese patients with type 2 diabetes. Eur J Clin Pharmacol 2008; 64: 663-671##.