Investigation of genetic factors associated with polycystic ovary syndrome

authors:

avatar Yodit Oheb , avatar mojgan asadi , avatar Negar Sarhangi , avatar Mahsa M Amoli , *


How To Cite Oheb Y, asadi M, Sarhangi N, M Amoli M. Investigation of genetic factors associated with polycystic ovary syndrome. koomesh. 2022;24(2):e152670. 

Abstract

Introduction: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders and causes 75% of infertility due to ovulation disorders in reproductive age. Women with PCOS have oligomenorrhea and hyperandrogenism that affect their quality of life and fertility at the same time. This syndrome has been one of the most controversial endocrine issues for many years. Research today suggests that PCOS is an inherited disease and that genes are involved in transmission to the next generation. The results of this study, which was performed on thousands of women around the world, show that the expression of some genes has changed. The genes that have been studied are responsible for the synthesis and regulation of steroid hormones, the regulation of gonadotropins, and the synthesis and function of insulin. Although the underlying cause of pathogenesis is not yet known, there is evidence for the role of genetic factors, lifestyle, nutrition, and environmental pollution in the development of the disease. Therefore, it is hoped that the treatment of this heterogeneous syndrome will improve with the help of personalized medicine. Further studies are needed to determine the association between the various factors that may play an active pathogenic role in PCOS.

References

  • 1.

    Azargoon A, Alavi Toussy J. Comparison of pregnant and non-pregnant women with clomiphene resistant polycystic ovary syndrome in treatment with metformin and letrozole. Koomesh 2011; 12: 327-333. (Persian).

  • 2.

    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 2006; 91: 4237-4245.

  • 3.

    Zawadeski J, Dunaif A. Diagnostic criteria for PCOS: towards a more rational approach. PCOS 1992; 377-384.

  • 4.

    Group R.E.A.S.P.C.W. Revised 2003 consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004; 19: 41-47.

  • 5.

    Chang RJ. A practical approach to the diagnosis of polycystic ovary syndrome. Am J Obstet Gynecol 2004; 191: 713-717.

  • 6.

    Salehi M, Bravo-Vera R, Sheikh A, Gouller A, Poretsky L. Pathogenesis of polycystic ovary syndrome: what is the role of obesity? Metabolism 2004; 53: 358-376.

  • 7.

    Glueck CJ, Morrison JA, Friedman LA, Goldenberg N, Stroop DM, Wang P. Obesity, free testosterone, and cardiovascular risk factors in adolescents with polycystic ovary syndrome and regularly cycling adolescents. Metabolism 2006; 55: 508-514.

  • 8.

    Talbott E, Guzick D, Clerici A, Berga S, Detre K, Weimer K, Kuller L. Coronary heart disease risk factors in women with polycystic ovary syndrome. Arterioscler Thromb Vasc Biol 1995; 15: 821-826.

  • 9.

    Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab 2007; 3: 103-111.

  • 10.

    Welt CK, Duran JM. Genetics of polycystic ovary syndrome. Semin Reprod Med 2014; 32: 177-182.

  • 11.

    Jahanfar S, Eden J. Genetic and non-genetic theories on the etiology of polycystic ovary syndrome. Gynecol Endocrinol 1996; 10: 357-364.

  • 12.

    Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, Panidis D. Genetics of polycystic ovary syndrome. Hippokratia 2009; 13: 216.

  • 13.

    Unluturk U, Harmanci A, Kocaefe C, Yildiz BO. The genetic basis of the polycystic ovary syndrome: a literature review including discussion of PPAR-. PPAR Res 2007; 2007.

  • 14.

    Franks S, Gilling-Smith C, Gharani N, McCarthy M. Pathogenesis of polycystic ovary syndrome: evidence for a genetically determined disorder of ovarian androgen production. Hum Fertil (Camb) 2000; 3: 77-79.

  • 15.

    Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 1997; 6: 397-402.

  • 16.

    Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR. Microsatellite polymorphism (tttta) n at 528 base pairs of gene CYP11 influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 2000; 73: 735-741.

  • 17.

    Wang Y, Wu XK, Cao YX, Yi L, Zou Y, Qu JW, Hou LH. Microsatellite polymorphism of (tttta) n in the promoter of CYP11a gene in Chinese women with polycystic ovary syndrome. Zhonghua Yi Xue Za Zhi 2005; 85: 3396-3400.

  • 18.

    Gaasenbeek M, Powell BL, Sovio U, Haddad L, Gharani N, Bennett A, et al. Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab 2004; 89: 2408-2413.

  • 19.

    Tan L, Zhu G. Relationship between the microsatellite polymorphism of CYP11 alpha gene and the pathogenesis of hyperandrogenism of polycystic ovary syndrome in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005; 22: 216-218.

  • 20.

    Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endoc Rev 1994; 15: 342-355.##https://doi.org/10.1210/edrv-15-3-342.

  • 21.

    Chen S, Besman MJ, Sparkes RS, Zollman S, Klisak I, Mohandas T, et al. Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15. Dna 1988; 7: 27-38.

  • 22.

    Harada N, Ogawa H, Shozu M, Yamada K. Genetic studies to characterize the origin of the mutation in placental aromatase deficiency. Am J Hum Genet 1992; 51: 666.

  • 23.

    Ito Y, Fisher CR, Conte FA, Grumbach MM, Simpson ER. Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries. Proc Natl Acad Sci U S A 1993; 90: 11673-11677.

  • 24.

    Takayama K, Fukaya T, Sasano H, Funayama Y, Suzuki T, Takaya R, et al. Endocrinology: Iminunohistochemical study of steroidogenesis and cell proliferation in polycystic ovarian syndrome. Hum Reproduct 1996; 11: 1387-1392.

  • 25.

    ERICKSO GF, Hsueh AJ, Quigley ME, Rebar RW, Yen SS. Functional studies of aromatase activity in human granulosa cells from normal and polycystic ovaries. J Clin Endocrinol Metab 1979; 49: 514-519.

  • 26.

    Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reproduct 1998; 4: 1-8.

  • 27.

    Sderlund D, Canto P, Carranza-Lira S, Mendez JP. No evidence of mutations in the P450 aromatase gene in patients with polycystic ovary syndrome. Hum Reproduct 2005; 20: 965-969.

  • 28.

    Petry CJ, Ong KK, Michelmore KF, Artigas S, Wingate DL, Balen AH, et al. Associations between common variation in the aromatase gene promoter region and testosterone concentrations in two young female populations. J Steroid Biochem Mol Biol 2006; 98: 199-206.

  • 29.

    Pugeat M, Crave JC, Tourniaire J, Forest MG. Clinical utility of sex hormone-binding globulin measurement. Horm Res 1996; 45: 148-155.

  • 30.

    Berube D, Seralini GE, Gagne R, Hammond GL. Localization of the human sex hormone-binding globulin gene (SHBG) to the short arm of chromosome 17 (17p12 p13). Cytogenet Cell Genet 1990; 54: 65-67.

  • 31.

    Hogeveen KN, Talikka M, Hammond GL. Human sex hormone-binding globulin promoter activity is influenced by a (TAAAA) n repeat element within an Alu sequence. J Biol Chem 2001; 276: 36383-36390.

  • 32.

    Xita N, Tsatsoulis A, Chatzikyriakidou A, Georgiou I. Association of the (TAAAA) n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. J Clin Endocrinol Metab 2003; 88: 5976-5980.

  • 33.

    Cousin P, Calemard-Michel L, Lejeune H, Raverot G, Yessaad N, Emptoz-Bonneton A, et al. Influence of SHBG gene pentanucleotide TAAAA repeat and D327N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J Clin Endocrinol Metab 2004; 89: 917-924.

  • 34.

    Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci U S A 1999; 96: 8573-8578.

  • 35.

    Hall JE, Taylor AE, Martin KA, CROWLEY JR WF. New approaches to the study of the neuroendocrine abnormalities of women with the polycystic ovarian syndrome. Ann N Y Acad Sci 1993; 687: 182-192.

  • 36.

    Furui KE, Suganuma NO, Tsukahara S, Asada YO, Kikkawa FU, Tanaka MA, et al. Identification of two point mutations in the gene coding luteinizing hormone (LH) beta-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab 1994; 78: 107-113.##https://doi.org/10.1210/jcem.78.1.7904610.

  • 37.

    Okuda K, Yamada T, Imoto H, Komatsubara H, Sugimoto O. Antigenic alteration of an anomalous human luteinizing hormone caused by two chorionic gonadotropin-type amino-acid substitutions. Biochem Biophys Res Commun 1994; 200: 584-590.

  • 38.

    Rajkhowa M, Taibot JA, Jones PW, Pettersson K, Haavisto AM, Huhtaniemi I, Clayton RN. Prevalence of an immunological LH subunit variant in a UK population of healthy women and women with polycystic ovary syndrome. Clin Endocrinol 1995; 43: 297-303.

  • 39.

    Nilsson C, Pettersson K, Millar RP, Coerver KA, Matzuk MM, Huhtaniemi IT. Worldwide frequency of a common genetic variant of luteinizing hormone: an international collaborative research. Fertil Steril 1997; 67: 998-1004.

  • 40.

    Ramanujam LN, Liao WX, Roy AC, Loganath A, Goh HH, Ng SC. Association of molecular variants of luteinizing hormone with menstrual disorders. Clin Endocrinol 1999; 51: 243-246.

  • 41.

    Elter K, Erel CT, Cine N, Ozbek U, Hacihanefioglu B, Ertungealp E. Role of the mutations Trp8 Arg and Ile15 Thr of the human luteinizing hormone -subunit in women with polycystic ovary syndrome. Fertil Steril 1999; 71: 425-430.

  • 42.

    Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001; 121: 503-512.

  • 43.

    Guo Q, Kumar TR, Woodruff T, Hadsell LA, DeMayo FJ, Matzuk MM l. Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 1998; 12: 96-106.##https://doi.org/10.1210/mend.12.1.0053.

  • 44.

    Legro RS, Spielman R, Urbanek M, Driscoll D, Strauss III JF, Dunaif A. Phenotype and genotype in polycystic ovary syndrome. Recent Prog Horm Res 1998; 53: 217-256.

  • 45.

    Urbanek M, Wu X, Vickery KR, Kao LC, Christenson LK, Schneyer A, et al. Allelic variants of the follistatin gene in polycystic ovary syndrome. J Clin Endocrinol Metab 2000; 85: 4455-4461.##https://doi.org/10.1210/jcem.85.12.7026.

  • 46.

    Calvo RM, Villuendas G, Sancho J, San Milln JL, Escobar-Morreale HF. Role of the follistatin gene in women with polycystic ovary syndrome. Fertil Steril 2001; 75: 1020-1023.

  • 47.

    Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989; 38: 1165-1174.##https://doi.org/10.2337/diabetes.38.9.1165.

  • 48.

    Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. Clin Invest 1995; 96: 801-810.

  • 49.

    Junien C, van Heyningen V. Report of the committee on the genetic constitution of chromosome 11. Cytogenet Cell Genet 1990; 55: 153-169.

  • 50.

    Kennedy GC, German MS, Rutter WJ. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 1995; 9: 293-298.

  • 51.

    Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P, Deal C. The INS 5 variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 1998; 273: 14158-14164.

  • 52.

    Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 1982; 295: 31-35.

  • 53.

    Ong KK, Phillips DI, Fall C, Poulton J, Bennett ST, Golding J, et al. The insulin gene VNTR, type 2 diabetes and birth weight. Nat Genet 1999; 21: 262-263.

  • 54.

    Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 1992; 41: 1257-1266.##https://doi.org/10.2337/diab.41.10.1257.

  • 55.

    Holte J, Bergh T, Berne CH, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 1995; 80: 2586-2593.##https://doi.org/10.1210/jcem.80.9.7673399.

  • 56.

    Waterworth DM, Bennett ST, Gharani N, McCarthy MI, Hague S, Batty S, et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. The Lancet 1997; 349: 986-990.

  • 57.

    Goldfine ID. The insulin receptor: molecular biology and transmembrane signaling. Endoc Rev 1987; 8: 235-255.

  • 58.

    Talbot JA, Bicknell EJ, Rajkhowa M, Krook A, O'Rahilly S, Clayton RN. Molecular scanning of the insulin receptor gene in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 1996; 81: 1979-1983.##https://doi.org/10.1210/jcem.81.5.8626868.

  • 59.

    Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF 3rd, et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13. 2. J Clin Endocrinol Metab 2005; 90: 6623-6629.

  • 60.

    Beim PY, Elashoff M, Hu-Seliger TT. Personalized reproductive medicine on the brink: progress, Reprod Biomed Online 2013; 27: 611-623.##.