Cancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells

authors:

avatar Ehsan Kakavandi , avatar maryam beiranvand , * , avatar Sharareh Moghim


How To Cite Kakavandi E, beiranvand M, Moghim S. Cancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells. koomesh. 2022;24(3):e152737. 

Abstract

Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective and have side effects. The use of oncolytic viruses (viral therapy) is a new approach to treating cancer. One problem with viral therapy is the lack of selective replication for the virus in cancer cells, meaning that the virus replicates in normal cells. In recent years, various methods have been used to inhibit virus replication in healthy cells and to make selective replication in tumors. Correspondingly, MiRNA targeting is the newest method. The present review article describes the different aspects of making selectivity for replication of oncolytic viruses by the miRNA targeting mechanism

References

  • 1.

    Shayestehpour M, Ehsani M, Dadkhah D, Zamani B. A case of antiphospholipid syndrome following gastric signet ring cell adenocarcinoma. Am J Case Rep 2020; 21: e919037.

  • 2.

    Johnson S, Tittenbrun Z, Romero Y, Torode J, Frech S, Abdel-Wahab M, et al. The World Cancer Declaration: time to consolidate wins and work towards 2025. The Lancet Oncol 2021; 22: 296-298.

  • 3.

    Roshandel G, Ferlay J, GhanbariMotlagh A, Partovipour E, Salavati F, Aryan K, et al. Cancer in Iran 2008 to 2025: Recent incidence trends and shortterm predictions of the future burden. Int J Cancer 2021; 149: 594-605.

  • 4.

    Karimi-Zarchi M, Hajimaghsoudi N, Tabatabai A, Moghimi M, Shayestehpour M, Doosti M. Prevalence of high-risk human papillomavirus types among women screened for cervical cancer in Yazd, Iran, and comparison of cytology, histology, and colposcopy results. Jundishapur J Microbiol 2020; 13: e100573. (Persian).

  • 5.

    Shayestehpour M. Selective replication capability of adenovirus 5 in breast cancer cells by inserting the target sequences of microRNA-145 in the end of E1A gene. Iran: Tehran Univ Med Sci 2016. (Persian).

  • 6.

    Doosti M, Bakhshesh M, Zahir ST, Shayestehpour M, Karimi-Zarchi M. Lack of Evidence for a relationship between high risk human papillomaviruses and breast cancer in Iranian patients. Asian Pac J Cancer Prev 2016; 17: 4357-4361.

  • 7.

    Badie F, Ghandali M, Tabatabaei SA, Safari M, Khorshidi A, Shayestehpour M, et al. Use of salmonella bacteria in cancer therapy: direct, drug delivery and combination approaches. Front Oncol 2021; 11: 624759.

  • 8.

    Szemitko M, Golubinska-Szemitko E, Wilk-Milczarek E, Falkowski A. Side effect/complication risk related to injection branch level of chemoembolization in treatment of metastatic liver lesions from colorectal cancer. J Clin Med 2021; 10: 121.

  • 9.

    Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy. Transl Res 2021.

  • 10.

    Shayestehpour M. Oncolytic viruses: can be applicable tools for cancer therapy? J Virus Adapt Treat 2020; 1: 1-2.

  • 11.

    Shayestehpour M. The potential ability of microRNA-targeted human adenovirus type 5 to replicate and Lyse breast cancer cells 2nd international congress on biomedicine. Iran Biomed 2019; p: 45. (Persian).

  • 12.

    Shayestehpour M, Yazdani S, Mokhtari-Azad T, Yavarian J. Construction of an oncolytic adenovirus for selective replication in breast cancer cells. The 12 th International Congress on Breast Cancer; 2017 Feb 22-24; Tehran, Iran.

  • 13.

    Chaurasiya S, Fong Y, Warner SG. Oncolytic virotherapy for cancer: clinical experience. Biomedicines 2021; 9: 419.

  • 14.

    Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to develop potent oncolytic viruses and enhance their therapeutic efficacy. JCO Precis Oncol 2021; 5: 733-743.

  • 15.

    Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134-1139.

  • 16.

    Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, et al. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells. Mol Ther 2007; 15: 2088-2093.

  • 17.

    Zhu ZB, Makhija SK, Lu B, Wang M, Rivera AA, Kim-Park S, et al. Incorporating the survivin promoter in an infectivity enhanced CRAd-analysis of oncolysis and anti-tumor effects in vitro and in vivo. Int J Oncol 2005; 27: 237-246.

  • 18.

    Shayestehpour M. The potential ability of micro RNA targeted human adenovirus type 5 to replicate and lyse breast cancer cells. The 2nd International Congress on Biomedicine; 2018 Dec 24-27; Tehran, Iran.

  • 19.

    Singh HM, Leber MF, Bossow S, Engeland CE, Dessila J, Grossardt C, et al. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Mol Ther Oncolytics 2021; 21: 340-355.

  • 20.

    Liu H, Xue YC, Deng H, Mohamud Y, Ng CS, Chu A, et al. MicroRNA modification of coxsackievirus B3 decreases its toxicity, while retaining oncolytic potency against lung cancer. Mol Ther Oncolytics 2021; 20: 1-2.

  • 21.

    Trehub Y, Havrilov A. Oncolytic viruses as immunotherapeutic agents. Cancer Immunol 2021; p. 509-541.

  • 22.

    Vh-Koskela MJ, Heikkil JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254: 178-216.

  • 23.

    Campbell SA, Gromeier M. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells. Onkologie 2005; 28: 209-215.

  • 24.

    Wong HH, Lemoine NR, Wang Y. Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2010; 2: 78-106.

  • 25.

    Brown BD, Venneri MA, Zingale A, Sergi LS, Naldini L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006; 12: 585-591.

  • 26.

    Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T, et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009; 57: 667-679.

  • 27.

    Papapetrou EP, Kovalovsky D, Beloeil L, Sant'Angelo D, Sadelain M. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 2009; 119: 157-168.

  • 28.

    Suzuki T, Sakurai F, Nakamura SI, Kouyama E, Kawabata K, Kondoh M, et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy. Mol Ther 2008; 16: 1719-1726.

  • 29.

    Geisler A, Jungmann A, Kurreck J, Poller W, Katus H, Vetter R, et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 2011; 18: 199-209.

  • 30.

    Xie J, Xie Q, Zhang H, Ameres SL, Hung JH, Su Q, et al. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 2011; 19: 526-535.

  • 31.

    Bo Y, Guo G, Yao W. MiRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neuro Oncol 2013; 112: 27-37.

  • 32.

    Liu J, Ma L, Li C, Zhang Z, Yang G, Zhang W. Tumor-targeting TRAIL expression mediated by miRNA response elements suppressed growth of uveal melanoma cells. Mol Oncol 2013; 7: 1043-1055.

  • 33.

    Saydaminova K, Ye X, Wang H, Richter M, Ho M, Chen H, et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol Ther Methods Clin Dev 2015; 2: 14057.

  • 34.

    Kelly EJ, Russell SJ. MicroRNAs and the regulation of vector tropism. Mol Ther 2009; 17: 409-416.

  • 35.

    Kelly EJ, Hadac EM, Greiner S, Russell SJ. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008; 14: 1278.

  • 36.

    Su CQ, Sham J, Xue HB, Wang XH, Chua D, Cui ZF, et al. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol 2004; 130: 591-603.

  • 37.

    Zhang Z, Zhang X, Newman K, Liu X. MicroRNA regulation of oncolytic adenovirus 6 for selective treatment of castration-resistant prostate cancer. Mol Cancer Ther 2012; 11: 2410-2418.

  • 38.

    Luo J, Xia Q, Zhang R, Lv C, Zhang W, Wang Y, et al. Treatment of cancer with a novel dual-targeted conditionally replicative adenovirus armed with mda-7/IL-24 gene. Clin Cancer Res 2008; 14: 2450-2457.

  • 39.

    He X, Liu J, Yang C, Su C, Zhou C, Zhang Q, et al. 5/35 fiber-modified conditionally replicative adenovirus armed with p53 shows increased tumor-suppressing capacity to breast cancer cells. Hum Gene Ther 2011; 22: 283-292.

  • 40.

    Yao W, Guo G, Zhang Q, Fan L, Wu N, Bo Y. The application of multiple miRNA response elements enables oncolytic adenoviruses to possess specificity to glioma cells. Virology 2014; 458: 69-82.

  • 41.

    Lee CY, Rennie PS, Jia WW. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin Cancer Res 2009; 15: 5126-5135.

  • 42.

    Mazzacurati L, Marzulli M, Reinhart B, Miyagawa Y, Uchida H, Goins WF, et al. Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV. Mol Ther 2015; 23: 99-107.

  • 43.

    Barnes D, Kunitomi M, Vignuzzi M, Saksela K, Andino R. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 2008; 4: 239-248.

  • 44.

    Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16: 1437-1443.

  • 45.

    Hikichi M, Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H, Nakamura T. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol Ther 2011; 19: 1107-1115.

  • 46.

    Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, et al. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17: 2807-2818.

  • 47.

    Brtsch MA, Leber MF, Bossow S, Singh M, Engeland C, Albert J, et al. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther 2014; 21: 373-380.

  • 48.

    Bofill-De Ros X, Gironella M, Fillat C. miR-148a-and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol Ther 2014; 22: 1665-1677.

  • 49.

    Fu X, Rivera A, Tao L, De Geest B, Zhang X. Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol Ther 2012; 20: 339-346.

  • 50.

    Kelly EJ, Nace R, Barber GN, Russell SJ. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 2010; 84: 1550-1562.

  • 51.

    Varble A, Chua MA, Perez JT, Manicassamy B, Garca-Sastre A. Engineered RNA viral synthesis of microRNAs. Proc Nat Acad Sci 2010; 107: 11519-11524.

  • 52.

    Perez JT, Pham AM, Lorini MH, Chua MA, Steel J. MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 2009; 27: 572.

  • 53.

    Langlois RA, Albrecht RA, Kimble B, Sutton T, Shapiro JS, Finch C, et al. MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nat Biotechnol 2013; 31: 844.

  • 54.

    Chua MA, Schmid S, Perez JT, Langlois RA. Influenza A virus utilizes suboptimal splicing to coordinate the timing of infection. Cell Rep 2013; 3: 23-29.

  • 55.

    Leber MF, Bossow S, Leonard VH, Zaoui K, Grossardt C, Frenzke M, et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19: 1097-1106.

  • 56.

    Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, et al, editors. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc 2014; Elsevier.

  • 57.

    Kueberuwa G, Cawood R, Tedcastle A, Seymour LW. Tissue-specific attenuation of oncolytic sindbis virus without compromised genetic stability. Hum Gene Ther 2014; 25: 154-165.

  • 58.

    Yarbrough ML, Zhang K, Sakthivel R, Forst CV, Posner BA, Barber GN, et al. Primate-specific miR-576-3p sets host defense signalling threshold. Nat Commun 2014; 5: 1-10.

  • 59.

    Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578-585.

  • 60.

    Pham AM, Langlois RA. Replication in cells of hematopoietic origin is necessary for Dengue virus dissemination. PLoS Pathog 2012; 8: e1002465.

  • 61.

    Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, Naldini L. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009; 6: 63.

  • 62.

    Tenoever BR. RNA viruses and the host microRNA machinery. Nat Rev Microbiol 2013; 11.

  • 63.

    Shayestehpour M, Moghim S, Salimi V, Jalilvand S, Yavarian J, Romani B, et al. Selective replication of miR-145-regulated oncolytic adenovirus in MCF-7 breast cancer cells. Future Virol 2016; 11: 671-680.

  • 64.

    Shayestehpour M, Moghim S, Salimi V, Jalilvand S, Yavarian J, Romani B, Mokhtari-Azad T. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240: 207-214.

  • 65.

    Callegari E, Elamin BK, D'Abundo L, Falzoni S, Donvito G, Moshiri F, et al. Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PloS One 2013; 8: e73964.

  • 66.

    Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, et al. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17: 2807-2818.

  • 67.

    Bofill-De Ros X, Villanueva E, Fillat C. Late-phase miRNA-controlled oncolytic adenovirus for selective killing of cancer cells. Oncotarget 2015; 6: 6179-6190.

  • 68.

    Jin H, Lv S, Yang J, Wang X, Hu H, Su C, et al. Use of microRNA Let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PloS One 2011; 6: e21307.

  • 69.

    Bofill-De Ros X, Gironella M, Fillat C. miR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol Ther 2014; 22: 1665-1677.

  • 70.

    Zhang Z, Zhang X, Newman K, Liu X, Seth P. MicroRNA regulation of oncolytic adenovirus 6 for selective treatment of castration-resistant prostate cancer. Mol Cancer Ther 2012; 11: 2410-2418.

  • 71.

    Ylsmki E, Martikainen M, Hinkkanen A, Saksela K. Attenuation of Semliki Forest virus neurovirulence by microRNA-mediated detargeting. J Virol 2013; 87: 335-344.

  • 72.

    He F, Yao H, Wang J, Xiao Z, Xin L, Liu Z, et al. Coxsackievirus B3 engineered to contain microRNA targets for muscle-specific microRNAs displays attenuated cardiotropic virulence in mice. J Virol 2015; 89: 908-916.

  • 73.

    Ruiz AJ, Hadac EM, Nace RA, Russell SJ. MicroRNA-detargeted mengovirus for oncolytic virotherapy. J Virol 2016; 90: 4078-4092.

  • 74.

    Hikichi M, Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H, Nakamura T. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol Ther 2011; 19: 1107-1115.

  • 75.

    Leber MF, Bossow S, Leonard VH, Zaoui K, Grossardt C, Frenzke M, et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19: 1097-1106.

  • 76.

    Baertsch MA, Leber MF, Bossow S, Singh M, Engeland CE, Albert J, et al. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther 2014; 21: 373-380.

  • 77.

    Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16: 1437-1443.

  • 78.

    Fu X, Rivera A, Tao L, De Geest B, Zhang X. Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol Ther 2012; 20: 339-346.

  • 79.

    Li JM, Kao KC, Li LF, Yang TM, Wu CP, Horng YM, et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virology J 2013; 10: 241.##.