Antibacterial effects of crude venom and their protein fractions of Hottentotta saulcyi scorpion

authors:

avatar Yousof Alipour , avatar jamil zargan ORCID , * , avatar jamil zargan


how to cite: Alipour Y, zargan J, zargan J. Antibacterial effects of crude venom and their protein fractions of Hottentotta saulcyi scorpion. koomesh. 2022;24(3):e152747. 

Abstract

Introduction: Infectious diseases, mainly caused by bacterial agents, are one of the most common causes of death worldwide. A significant number of these agents have been resistant to one or more antibiotics some of them are multi-drug resistant and others are extensively drug resistant. Various antimicrobial and anticancer compounds have been reported from the venom of various species of scorpions. In this study, the antibacterial effects of crude venom and protein fractions of Hottentotta saulcyi were studied. Materials and Methods: In this study, the electrophoresis and chromatographic patterns of crude venom of the scorpion were obtained. Then, the antibacterial properties of the crude venom and its protein fractions on a Gram-positive bacterium, Bacillus subtilis (B. subtilis), and a Gram-negative bacterium, Escherichia coli (E. coli), were evaluated using the minimal inhibitory concentration (MIC) assay by microdilution method. Results: In the Tricine SDS-PAGE profile of the crude venom, 7 protein bands, with a molecular weight of 4.1 to 104 kDa were observed. In chromatographic studies, 14 main peaks were isolated and collected, of which 9 fractions contained protein. The crude venom at a concentration of 200 μg/ml had a significant inhibitory effect on Gram-positive and Gram-negative bacteria. The effect of the protein fractions of the crude venom was also different in these two types of bacteria. Conclusion: The results of this study showed for the first time that the crude venom of Hottentotta saulcyi and some of its protein fractions have antibacterial properties.

References

  • 1.

    Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SF. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem 2015; 173: 339-347.

  • 2.

    Organization WH. World health statistics 2010. 2010; World Health Organization.

  • 3.

    Rolain J, Canton R, Cornaglia G. Emergence of antibiotic resistance: Need for a new paradigm. Clin Microbiol Infect 2012; 18: 615-616.

  • 4.

    Brogden N, Brogden K. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011; 38: 217-225.

  • 5.

    Fratini F, Cilia G, Turchi B, Felicioli A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130: 91-103.

  • 6.

    Tarazi S. Scorpion venom as antimicrobial peptides (AMPs): A review article. Int Arabic J Antimicrob Agents 2016; 5: 1-9.

  • 7.

    Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides 2014; 51: 35-45.

  • 8.

    Sit CS, Vederas JC. Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem Cell Biol 2008; 86: 116-123.

  • 9.

    Carriel-Gomes MC, Kratz JM, Barracco MA, Bachre E, Barardi CR, Simes CM. In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem Inst Oswaldo Cruz 2007; 102: 469-472.

  • 10.

    Moreira CK, Rodrigues FG, Ghosh A, Varotti FD, Miranda A, Daffre S, et al. Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp Parasitol 2007; 116: 346-353.

  • 11.

    Cole AM, Cole AL. Antimicrobial polypeptides are key antiHIV1 effector molecules of cervicovaginal host defense. Am J Reproduct Immunol 2008; 59: 27-34.

  • 12.

    Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon 2015; 93: 125-135.

  • 13.

    Goyffon M, Tournier JN. Tournier, Scorpions: A presentation. Toxins 2014; 6: 2137-2148.

  • 14.

    Dehghani R, Haghi FM, Mogaddam MY, Sedaghat MM, Hajati H. Review study of scorpion classification in Iran. J Entomol Zool Stud 2016; 4: 440-444.

  • 15.

    Dehghani R, Fathi B. Scorpion sting in Iran: a review. Toxicon 2012; 60: 919-933.

  • 16.

    Nejati J, Mozafari E, Saghafipour A, Kiyani M. Scorpion fauna and epidemiological aspects of scorpionism in southeastern Iran. Asian Pac J Trop Biomed 2014; 4: S217-S221.

  • 17.

    Kovak F, Yamur EA, Fet V, Navidpour S. On two subspecies of Mesobuthus eupeus (CL Koch, 1839) in Turkey (Scorpiones: Buthidae). Euscorpius 2011; 2011: 1-15.

  • 18.

    de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46: 831-844.

  • 19.

    Jalali A, Bosmans F, Amininasab M, Clynen E, Cuypers E, Zaremirakabadi A, et al. OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltagegated Na+ channels. FEBS Lett 2005; 579: 4181-4186.

  • 20.

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.

  • 21.

    Gels T, Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987; 166: 368-379.

  • 22.

    Haider SR, Reid HJ, Sharp BL. Modification of tricine-SDS-PAGE for online and offline analysis of phosphoproteins by ICP-MS. Anal Bioanal Chem 2010; 397: 655-664.

  • 23.

    Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp Mol Pathol 2011; 91: 447-454.

  • 24.

    CaLSI, C., Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 2012, M07A9.

  • 25.

    Yalcn HT, Ozen MO, Gocmen B, Nalbantsoy A. Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology 2014. 66: 87-94.

  • 26.

    Hosseinpour MO, Zargan JA, Honari H, Haji Nour Mohammadi A, Hajizadeh AB, et al. Introduction of dianthins: a new promising horizon toward continuous research on breast cancer bulldozing in Iran. Int J Med Toxicol Forens Med 2019; 9: 133-140. (Persian).

  • 27.

    Petricevich VL. Scorpion venom and the inflammatory response. Med Inflammat 2010; 2010.

  • 28.

    Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein EJ. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. J Infect Dis 1991; 164: 195-198.

  • 29.

    Zargan J, Sobati H, Goodarzi H, Haji Noor Mohammadi A, Ebrahimi F. Anti-cancer and anti-bacterial effects of crude venom of Pseudocerastes persicus snake. Koomesh 2020; 22: 518-528. (Persian).

  • 30.

    Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol in Vitro 2011; 25: 1748-1756.

  • 31.

    Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem 2011; 348: 173-181.

  • 32.

    Salarian AA, Jalali A, Mirakabadi AZ, Vatanpour H, Shirazi FH. Cytotoxic effects of two Iranian scorpions Odontobuthusdoriae and Bothutus saulcyi on five human cultured cell lines and fractions of toxic venom. Iran J Pharm Res 2012; 11: 357.

  • 33.

    Dezianian S, Zargan J, Goudarzi HR, Noormohamadi AH, Mousavi M, Alikhani HK, Johari B. In-vitro study of hottentotta schach crude venom anticancer effects on mcf-7 and vero cell lines. Iran J Pharm Res 2018; 19: 192-202.

  • 34.

    Mousavi M, Zargan J, Haji Noor Mohammadi A, Goudarzi HR, Dezianian S, Keshavarz Alikhani H, Johari B. Anticancer effects of the Latrodectus dahli crude venom on MCF7 breast cancer cell line. Breast J 2019; 25: 781-782.

  • 35.

    TorresLarios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000; 267: 5023-5031.

  • 36.

    Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, et al. Antibacterial and antifungal properties of helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 2002; 269: 4799-4810.

  • 37.

    Conde R, Zamudio FZ, Rodrguez MH, Possani LD. Scorpine, an antimalaria and antibacterial agent purified from scorpion venom. FEBS Lett 2000; 471: 165-168.

  • 38.

    Mousavi M, Johari B, Zargan J, Haji Noor Mohammadi A, Goudarzi HR, Dezianian S, Keshavarz Alikhani H. Investigating antibacterial effects of latrodectus dahli crude venom on escherichia coli, staphylococcus aureus and bacillus subtilis. Med Laborat J 2019; 13: 14-19.

  • 39.

    Yamur EA, zkan O, Karaer KZ. Determination of the median lethal dose and electrophoretic pattern of Hottentotta saulcyi (Scorpiones, Buthidae) scorpion venom. J Arthropod Borne Dis 2015; 9: 238.

  • 40.

    San TM, Vejayan J, Shanmugan K, Ibrahim H. Screening antimicrobial activity of venoms from snakes commonly found in malaysia. J Appl Sci 2010; 10: 2328-2332.

  • 41.

    Zeng XC, Wang S, Nie Y, Zhang L, Luo X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 2012; 33: 44-51.

  • 42.

    Tossi A, Sandri L, Giangaspero A. Amphipathic, -Helical Antimicrobial Peptides Pept. Pept Sci 2000; 55: 4-30.##https://doi.org/10.1002/1097-0282(2000)55:13.0.CO;2-M.

  • 43.

    Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999; 1462: 71-87.

  • 44.

    Ahmed U, Malik Mujaddad-ur-Rehman NK, Fawad SA, Fatima A. Antibacterial activity of the venom of Heterometrus xanthopus. Indian J Pharmacol 2012; 44: 509.

  • 45.

    Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TK, Bow H, Yap EH, Thong TW. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol 2007; 102: 650-659.

  • 46.

    Erde E, Doan TS, Coar , Danman T, Kunt KB, eker T, et al. Characterization of Leiurus abdullahbayrami (Scorpiones: Buthidae) venom: peptide profile, cytotoxicity and antimicrobial activity. J Venom Anim Toxins Incl Trop Dis 2014; 20: 48.

  • 47.

    Salama W, Geasa N. Investigation of the antimicrobial and hemolytic activity of venom of some Egyptian scorpion. J Microbiol Antimicrob 2014; 6: 21-28.

  • 48.

    Keshavarz Alikhani H, Zargan J, Bidmeshkipour A, Haji Nour Mohammadi A, Hosseinpour M, et al. Antibacterial Activity of the Iranian Scorpion's Crude Venom (Odontobuthus bidentatus) on Gram-positive and Gram-negative Bacteria. Iran J Toxicol 2020; 14: 105-110.

  • 49.

    Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013; 4: 20.

  • 50.

    Vasilchenko AS, Rogozhin EA. Sub-inhibitory effects of antimicrobial peptides. Front Microbiol 2019; 10: 1160.

  • 51.

    Prasetyoputri A, Jarrad AM, Cooper MA, Blaskovich MA. The Eagle effect and antibiotic-induced persistence: two sides of the same coin? Trends Microbiol 2019; 27: 339-354.

  • 52.

    Eagle H. A paradoxical zone phenomenon in the bactericidal action of penicillin in vitro. Science (Washington) 1948; 44-45.

  • 53.

    Eagle H, Musselman A. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J Exp Med 1948; 88: 99-131.

  • 54.

    Standards, N.C.f.C.L. and A.L. Barry, Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Vol. 19. 1999: National Committee for Clinical Laboratory Standards Wayne, PA.

  • 55.

    Kirby WM. Bacteriostatic and lytic actions of penicillin on sensitive and resistant staphylococci. J Clin Invest 1945; 24: 165-169.

  • 56.

    Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol 2017; 15: 453.

  • 57.

    Radzikowski JL, Schramke H, Heinemann M. Bacterial persistence from a system-level perspective. Curr Opin Biotechnol 2017; 46: 98-105.

  • 58.

    Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016; 354.

  • 59.

    Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016; 14: 320-330.

  • 60.

    Tincho MB, Morris T, Meyer M, Pretorius A. Antibacterial activity of rationally designed antimicrobial peptides. Int J Microbiol 2020; 2020: 2131535.

  • 61.

    Ulagesan S, Kim HJ. Antibacterial and antifungal activities of proteins extracted from seven different snails. Appl Sci 2018; 8: 1362.

  • 62.

    Cesa-Luna C, Muoz-Rojas J, Saab-Rincon G, Baez A, Morales-Garca YE, Jurez-Gonzlez VR, Quintero-Hernndez V. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. Plos One 2019; 14: e0222438.

  • 63.

    Zerouti K, Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin Rev 2019; 1-15.##.