Preparation and evaluation of 99mTc-labeled zidovudine function as an analog of thymidine in the diagnosis of human lung cancer cells

authors:

avatar Seyedeh Mahdieh Hashemi , avatar Sakineh Jokar , avatar Fatemeh Naghipour , avatar Zohreh Noaparast , *


how to cite: Hashemi S M, Jokar S, Naghipour F, Noaparast Z. Preparation and evaluation of 99mTc-labeled zidovudine function as an analog of thymidine in the diagnosis of human lung cancer cells. koomesh. 2024;24(4):e152761. 

Abstract

Introduction: Labeled nucleotide detectors provide a basis for measuring cell division. Zidovudine is a prodrug that is phosphorylated by cellular enzymes at the 5ʹ position and converted to active triphosphate. Zidovudine triphosphate interferes with the reverse transcriptase enzyme and lengthens the viral DNA strand. Materials and Methods: Ethyl-2-propynyl acetate and 2-amino-N-propynyl benzamide ligands were obtained by the reaction of ethyl-2-amino-acetate hydrochloride with propargyl bromide and isatuic anhydride with propargylamine, respectively. Then, a click reaction was performed between the acetylene group of the ligands and the azide group of zidovudine, and a 1,2,3-triazole ring was formed in the chelating products. The resulting structures were labeled with [99mTc(CO)3(H2O)3]+ complex. Qualitative control and then radiotherapy stability in normal saline were performed using HPLC. In vitro studies were performed to evaluate the accumulation of radiotherapy using the blocking method. Results: The chemical structures of chelating compounds were confirmed by proton and carbon magnetic resonance spectroscopy and elemental analysis. Using optimal conditions, the thymidine analogs were labeled with the desired yield. The labeled compounds had good stability in normal saline and showed entry into lung cancer cells. Conclusion: These studies demonstrated the capability of labeled azidothymidine analogs as a tool for molecular imaging of cancer.

References

  • 1.

    Liu X, Ren J, Su L, Gao X, Tang Y, Ma T, et al. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens Bioelectron 2017; 87: 203-208.https://doi.org/10.1016/j.bios.2016.08.051PMid:27566392.

  • 2.

    Tjuvajev JG, Blasberg RG. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 2003; 3: 327-332.https://doi.org/10.1016/S1535-6108(03)00082-5.

  • 3.

    Hong H, Zhang Y, Sun J, Cai W. Positron emission tomography imaging of prostate cancer. Amino Acids 2010; 39: 11-27.https://doi.org/10.1007/s00726-009-0394-9PMid:19946787 PMCid:PMC2883014.

  • 4.

    Van Den Bossche B, Van de Wiele C. Receptor imaging in oncology by means of nuclear medicine: current status. J Clin Oncol 2004; 22: 3593-3607.https://doi.org/10.1200/JCO.2004.10.216PMid:15337810##.

  • 5.

    Eckelman WC. Unparalleled contribution of technetium-99m to medicine over 5 decades. JACC: Cardiovasc Imag 2009; 2: 364-368.https://doi.org/10.1016/j.jcmg.2008.12.013PMid:19356582##.

  • 6.

    Unak P, Teksoz S, Biber Muftuler F, Medine E, Acar C, Yurekli Y. 99mTc glucoheptonate-guanine: synthesis, biodistribution and imaging in animals. J Radioanal Nucl Chem 2008; 275: 379-385.https://doi.org/10.1007/s10967-007-6934-4.

  • 7.

    Tsao N, Chanda M, Yu DF, Kurihara H, Zhang YH, Mendez R, et al. 99mTc-N4amG: Synthesis biodistribution and imaging in breast tumor-bearing rodents. Appl Radiat Isot 2014; 72: 105-113.https://doi.org/10.1016/j.apradiso.2012.07.018PMid:23208240 PMCid:PMC3881426.

  • 8.

    D'Andrea G, Brisdelli F, Bozzi A. AZT: an old drug with new perspectives. Curr Clin Pharmacol 2008; 3: 20-37.https://doi.org/10.2174/157488408783329913PMid:18690875.

  • 9.

    Toyohara J, Nariai T, Sakata M, Oda K, Ishii K, Kawabe T, et al. Whole-body distribution and brain tumor imaging with 11C-4DST: a pilot study. J Nucl Med 2011; 52: 1322-1328.https://doi.org/10.2967/jnumed.111.088435PMid:21764794.

  • 10.

    Lynx MD, Kang BK, McKee EE. Effect of AZT on thymidine phosphorylation in cultured H9c2, U-937, and Raji cell lines. Biochem Pharmacol 2008; 75: 1610-1615.https://doi.org/10.1016/j.bcp.2008.01.006PMid:18295188 PMCid:PMC2364649.

  • 11.

    Brown T, Sigurdson E, Rogatko A, Broccoli D. Telomerase inhibition using azidothymidine in the HT-29 colon cancer cell line. Ann Surg Oncol 2003; 10: 910.https://doi.org/10.1245/ASO.2003.03.032PMid:14527910.

  • 12.

    Struthers H, Viertl D, Kosinski M, Spingler B, Buchegger F, Schibli R. Charge dependent substrate activity of C3 and N3 functionalized, organometallic technetium and rhenium-labeled thymidine derivatives toward human thymidine kinase 1. Bioconjug Chem 2010; 21: 622-634.https://doi.org/10.1021/bc900380nPMid:20359195.

  • 13.

    Guggenheim KG, Toru H, Kurth MJ. One-pot-Two-step Cascade synthesis of quinazolinotriazolobenzodiazepines. Org Lett 2012; 14: 3732-3735.https://doi.org/10.1021/ol301592zPMid:22746550 PMCid:PMC3486955.

  • 14.

    Farjadmand F, Arshadi H, Moghimi S, Nadri H, Eghtedari M, Jafarpour F, et al. Synthesis and evaluation of novel quinazolinone-1,2,3-triazoles as inhibitors of lipoxygenase. J Chem Res 2016; 40: 188-191. (Persian).https://doi.org/10.3184/174751916X14558913889738.

  • 15.

    Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [(99m)Tc(OH(2))3(CO)3]+. J Am Chem Soc 2001; 123: 3135-3136.https://doi.org/10.1021/ja003932bPMid:11457025.

  • 16.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. Cancer J Clin 2017; 67: 7-30.https://doi.org/10.3322/caac.21387PMid:28055103##.

  • 17.

    Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, et al. 2-[C-11] thymidine imaging of malignant brain tumors. Cancer Res 1999; 59: 615-621.

  • 18.

    Yang DJ, Ozaki K, Oh CS, Azhdarinia A, Yang T, Ito M, et al. 99mTc-EC-guanine: synthesis, biodistribution, and tumor imaging in animals. Pharm Res 2005; 22: 1471-1479.https://doi.org/10.1007/s11095-005-6157-8PMid:16132359.

  • 19.

    Duan X, Zhang X, Gan Q, Ruan Q, Song X, Zhang J. Novel 99m Tc-labelled complexes with thymidine isocyanide: radiosynthesis and evaluation as potential tumor imaging tracers. Med Chem Comm 2018; 9: 705-712.https://doi.org/10.1039/C7MD00635GPMid:30108961 PMCid:PMC6071732##.

  • 20.

    Teng B, Bai Y, Chang Y, Chen S, Li Z. Technetium-99m-labeling and synthesis of thymidine analogs: Potential candidates for tumor imaging. Bioorg Med Chem Lett 2007; 17: 3440-3444.https://doi.org/10.1016/j.bmcl.2007.03.086PMid:17449246.

  • 21.

    Wang L, Lieberman BP, Ploessl K, Kung HF. Synthesis and evaluation of 18F labeled FET prodrugs for tumor imaging. Nucl Med Biol 2014; 41: 58-67.https://doi.org/10.1016/j.nucmedbio.2013.09.011PMid:24183614 PMCid:PMC3895945.

  • 22.

    Zhang Y, Dai X, Kallmes DF, Pan D. Synthesis of a technetium-99m-labeled thymidine analog: a potential HSV1-TK substrate for non-invasive reporter gene expression imaging. Tetrahedron Lett 2004; 45: 8673-8676.https://doi.org/10.1016/j.tetlet.2004.09.145.

  • 23.

    Tahara T, Zhang Z, Ohno M, Hirao Y, Hosaka N, Doi H, et al. A novel 11 C-labeled thymidine analog,[11 C] AZT, for tumor imaging by positron emission tomography. EJNMMI Res 2015; 5: 45.https://doi.org/10.1186/s13550-015-0124-0PMid:26337804 PMCid:PMC4597405.

  • 24.

    Anonymous. Technetium-99m radiopharmaceuticals: status and trends. Technical Reports Series. p. 41. Vienna: International Atomic Energy Agency. 2009.##.

  • 25.

    Schibli R, Netter M, Scapozza L, Birringer M, Schelling P, Dumas C, et al. First organometallic inhibitors for human thymidine kinase: synthesis and in vitro evaluation of rhenium (I)-and technetium (I)-tricarbonyl complexes of thymidine. J Organom Chem 2003; 668: 67-74.

  • 26.

    Celen S, de Groot T, Balzarini J, Vunckx K, Terwinghe C, Vermaelen P, et al. Synthesis and evaluation of a 99mTc-MAMA-propyl-thymidine complex as a potential probe for in vivo visualization of tumor cell proliferation with SPECT. Nucl Med Biol 2007; 34: 283-291.

  • 27.

    Desbouis D, Struthers H, Spiwok V, Kuster T, Schibli R. Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J Med Chem 2008; 51: 6689-6698.

  • 28.

    Duan X, Liu T, Zhang Y, Zhang J. Synthesis and biological evaluation of novel 99mTc (CO) 3-Labeled thymidine analogs as potential probes for tumor proliferation imaging. Molecules 2016; 21: 510.

  • 29.

    Duan X, Ruan Q, Gan Q, Song X, Zhang X, Zhang J. Radiosynthesis and evaluation of novel 99mTc (CO) 3-labelled thymidine dithiocarbamate derivatives for tumor imaging with SPECT. J Organom Chem 2018; 868: 154-163.