Abstract
Keywords
Covid-19 SARS-CoV2 Nucleocapsid Recombinant Immunogenic Epitope کووید-19 سارسکوو2 نوکلئوکپسید ایمونوژن نوترکیب اپیتوپ
References
-
1.
Shimizu K. 2019-nCoV, fake news, and racism. Lancet 2020; 395: 685-686.##https://doi.org/10.1016/S0140-6736(20)30357-3.
-
2.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506.##https://doi.org/10.1016/S0140-6736(20)30183-5.
-
3.
Dahlke C, Heidepriem J, Kobbe R, Santer R, Koch T, Fathi A, et al. Distinct early IgA profile may determine severity of COVID-19 symptoms: an immunological case series. Med Rxiv 2020.##https://doi.org/10.1101/2020.04.14.20059733.
-
4.
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 2020; 41: 1100-1115.##https://doi.org/10.1016/j.it.2020.10.004.
-
5.
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265-269.##https://doi.org/10.1038/s41586-020-2008-3.
-
6.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565-574.##https://doi.org/10.1016/S0140-6736(20)30251-8.
-
7.
Cheng Y, Feng Y, Luo P, Gu J, Yu S, Zhang WJ, et al. Fusion expression and immunogenicity of EHEC EspA-Stx2Al protein: implications for the vaccine development. J Microbiol 2009; 47: 498-505.##https://doi.org/10.1007/s12275-009-0116-8.
-
8.
Tilocca B, Soggiu A, Musella V, Britti D, Sanguinetti M, Urbani A, et al. Molecular basis of COVID-19 relationships in different species: a one health perspective. Microbes Infect 2020; 22: 218-220.##https://doi.org/10.1016/j.micinf.2020.03.002.
-
9.
Meyer B, Drosten C, Mller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res 2014; 194: 175-183.##https://doi.org/10.1016/j.virusres.2014.03.018.
-
10.
Tay MZ, Poh CM, Rnia L, MacAry PA, Ng LF. The trinity of 467 COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20: 363-374.
-
11.
Mercurio I, Tragni V, Busto F, De Grassi A, Pierri CL. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Cell Mol Life Sci 2021; 78: 1501-1522.##https://doi.org/10.1007/s00018-020-03580-1.
-
12.
Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020; 87: 59-73.##https://doi.org/10.1016/j.bbi.2020.04.046.
-
13.
Cuesta-Herranz J, de las Heras M, Fernndez M, Lluch M, Figueredo E, Umpierrez A, et al. Allergic reaction caused by local anesthetic agents belonging to the amide group. J Allergy Clin Immunol 1997; 99: 427-428.##https://doi.org/10.1016/S0091-6749(97)70064-2.
-
14.
He Y, Zhou Y, Wu H, Kou Z, Liu S, Jiang S. Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus. J Clin Microbiol 2004; 42: 5309-5314.##https://doi.org/10.1128/JCM.42.11.5309-5314.2004.
-
15.
Masters PS, Sturman LS. Background paper functions of the coronavirus nucleocapsid protein. Adv Exp Med Biol 1990; 276: 235-238.##https://doi.org/10.1007/978-1-4684-5823-7_32.
-
16.
Kopecky-Bromberg SA, Martnez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007; 81: 548-557.##https://doi.org/10.1128/JVI.01782-06.
-
17.
Surjit M, Liu B, Chow VT, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 2006; 281: 10669-10681.##https://doi.org/10.1074/jbc.M509233200.
-
18.
Zhu Y, Liu M, Zhao W, Zhang J, Zhang X, Wang K, et al. Isolation of virus from a SARS patient and genome-wide analysis of genetic mutations related to pathogenesis and epidemiology from 47 SARS-CoV isolates. Virus Genes 2005; 30: 93-102.##https://doi.org/10.1007/s11262-004-4586-9.
-
19.
Hotez PJ, Corry DB, Strych U, Bottazzi ME. COVID-19 vaccines: neutralizing antibodies and the alum advantage. Nat Rev Immunol 2020; 20: 399-400.##https://doi.org/10.1038/s41577-020-0358-6.
-
20.
Wang H, Zhang Q, Shishido T, Takehira KJ. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontiermodel. J Produc Anal 2002; 18: 241-253.##https://doi.org/10.1023/A:1020638827640.
-
21.
Wang C, Li W, Drabek D, Okba N, van Haperen R, Osterhaus AD, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11: 1-6.##https://doi.org/10.1038/s41467-020-16256-y.
-
22.
Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26: 1200-1204.##https://doi.org/10.1038/s41591-020-0965-6.
-
23.
Okba NM, Mller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2 specific antibody responses in coronavirus disease patients. Emerging Infect Dis 2020; 26: 1478.##https://doi.org/10.3201/eid2607.200841.
-
24.
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47: W636-W641.##https://doi.org/10.1093/nar/gkz268.
-
25.
Saha S, Raghava GP. Prediction of continuous Bcell epitopes in an antigen using recurrent neural network. Proteins 2006; 65: 40-48.##https://doi.org/10.1002/prot.21078.
-
26.
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592: 616-622.##https://doi.org/10.1038/s41586-021-03324-6.
-
27.
Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 2021; 384: 1412-1423.##https://doi.org/10.1056/NEJMoa2101765.
-
28.
Keehner J, Horton LE, Pfeffer MA, Longhurst CA, Schooley RT, Currier JS, et al. SARS-CoV-2 infection after vaccination in health care workers in California. N Engl J Med 2021; 384: 1774-1775.##https://doi.org/10.1056/NEJMc2101927.
-
29.
Oliveira SC, de Magalhes MT, Homan EJ. Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets. Front Immunol 2020; 2758.##https://doi.org/10.3389/fimmu.2020.587615.
-
30.
Mierendorf RC, Morris BB, Hammer B, Novy RE. Expression and purification of recombinant proteins using the pET system. Methods Mol Med 1998; 13: 257-292.##https://doi.org/10.1385/0-89603-485-2:257.
-
31.
Djukic T, Mladenovic M, Stanic-Vucinic D, Radosavljevic J, Smiljanic K, Sabljic L, et al. Expression, purification and immunological characterization of recombinant nucleocapsid protein fragment from SARS-CoV-2. Virology 2021; 557: 15-22.##https://doi.org/10.1016/j.virol.2021.01.004.
-
32.
Leenaars M, Hendriksen CF. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J 2005; 46: 269-279.##https://doi.org/10.1093/ilar.46.3.269.
-
33.
Shi J, Zhang J, Li S, Sun J, Teng Y, Wu M, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PloS One 2015; 10: e0144475.##https://doi.org/10.1371/journal.pone.0144475.
-
34.
Veit S, Jany S, Fux R, Sutter G, Volz A. CD8+ T cells responding to the Middle East respiratory syndrome coronavirus nucleocapsid protein delivered by vaccinia virus MVA in mice. Viruses 2018; 10: 718.##https://doi.org/10.3390/v10120718.
-
35.
Le Bert N, Tan AT, Kunasegaran K, Tham CY, Hafezi M, Chia A, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020; 584: 457.##https://doi.org/10.1038/s41586-020-2550-z.