Logo

Design and development of CAR-T cells for cancer therapy

Author(s):
Shafieeh MansooriShafieeh Mansoori, Monireh GholizadehMonireh Gholizadeh, Shahriyar AbdoliShahriyar Abdoli, Sohiela AjdariSohiela Ajdari, Mohammad Ali ShokrgozarMohammad Ali Shokrgozar, Mohsen BasiriMohsen BasiriMohsen Basiri ORCID, Zahra SharifzadehZahra Sharifzadeh,*

Koomesh:Vol. 25, issue 1; 1-15
Published online:Mar 02, 2023
Article type:Research Article
Received:Aug 01, 2021
Accepted:Oct 02, 2022
How to Cite:Shafieeh MansooriMonireh GholizadehShahriyar AbdoliSohiela AjdariMohammad Ali ShokrgozarMohsen BasiriZahra Sharifzadehet al.Design and development of CAR-T cells for cancer therapy.koomesh.25(1):e152796.

Abstract

References

  • 1.
    Global Cancer Observatory [cited 2021 Feb 26]. Available from: https://gco.iarc.fr/.
  • 2.
    Zamani F, Oraee-Yazdani S, Langroudi L, Hashemi SM. Role of mesenchymal stem cells in growth and progression of cancer and prospective potentials in cancer therapy. Koomesh 2022; 24: 1-25. (Persian).
  • 3.
    Global Cancer Observatory. Available from: https://gco.iarc.fr/.##.
  • 4.
    Jiang X, Xu J, Liu M, Xing H, Wang Z, Huang L, et al. Adoptive CD8+ T cell therapy against cancer: Challenges and opportunities. Cancer Lett 2019; 462: 23-32.
  • 5.
    Hartmann J, SchlerLenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017; 9: 1183-1197.
  • 6.
    Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2014; 6: 1265-1278.
  • 7.
    Sarkar I, Pati S, Dutta A, Basak U, Sa G. T-memory cells against cancer: remembering the enemy. Cell Immunol 2019; 338: 27-31.
  • 8.
    Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233: 1318-1321.
  • 9.
    June C, Rosenberg SA, Sadelain M, Weber JS. T-cell therapy at the threshold. Nat Biotechnol 2012; 30: 611-614.
  • 10.
    Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 2015; 21: 1019-1027.
  • 11.
    Eckle SB, Turner SJ, Rossjohn J, McCluskey J. Predisposed T cell antigen receptor recognition of MHC and MHC-I like molecules? Curr Opin Immunol 2013; 25: 653-659.
  • 12.
    Shao H, Zhang W, Hu Q, Wu F, Shen H, Huang S. TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer. Mol Biol Rep 2010; 37: 3951-3956.
  • 13.
    Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16: 565-570.
  • 14.
    van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A 2010; 107: 10972-10977.
  • 15.
    GomesSilva D, Ramos CA. Cancer immunotherapy using CART cells: from the research bench to the assembly line. Biotechnology 2018; 13: 1700097.
  • 16.
    Rohaan MW, Wilgenhof S, Haanen JB. Adoptive cellular therapies: the current landscape. Virchows Arch 2019; 474: 449-461.
  • 17.
    Kansagra A, Farnia S, Majhail N. Expanding access to chimeric antigen receptor T-cell therapies: challenges and opportunities. Am Soc Clin Oncol Educ Book 2020; 40: e27-e34.
  • 18.
    Guo Y, Feng K, Tong C, Jia H, Liu Y, Wang Y, et al. Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment. Cell Mol Immunol 2020; 17: 430-432.
  • 19.
    Castelletti L, Yeo D, van Zandwijk N, Rasko JE. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark Res 2021; 9: 1-13.
  • 20.
    Nukala U, Rodriguez Messan M, Yogurtcu ON, Wang X, Yang H. A systematic review of the efforts and hindrances of modeling and simulation of CAR T-cell therapy. AAPS J 2021; 23: 1-20.
  • 21.
    Chong EA, Alanio C, Svoboda J, Nasta SD, Landsburg DJ, Lacey SF, et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 2022; 139: 1026-1038.
  • 22.
    Baird JH, Frank MJ, Craig J, Patel S, Spiegel JY, Sahaf B, et al. CD22-Directed CAR T-cell therapy mediates durable complete responses in adults with relapsed or refractory large B-cell lymphoma after failure of CD19-directed CAR T-cell therapy and high response rates in adults with relapsed or refractory B-cell acute lymphoblastic leukemia. Blood 2020; 136: 28-29.##https://doi.org/10.1182/blood-2020-139087.
  • 23.
    Bastos-Oreiro M, de las Heras A, Presa M, Casado MA, Pardo C, Martn-Escudero V, et al. Cost-Effectiveness analysis of axicabtagene ciloleucel vs. tisagenlecleucel for the management of relapsed/refractory diffuse large B-Cell lymphoma in spain. Cancers 2022; 14: 538.
  • 24.
    Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 2013; 39: 49-60.
  • 25.
    Rahimi Jamnani F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, Parhamifar L, Moghimi SM. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta 2014; 1840: 378-386.
  • 26.
    Plckthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 2015; 55: 489-511.
  • 27.
    Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol 2021; 18: 379-393.
  • 28.
    Davies DM, Foster J, Van Der Stegen SJ, Parente-Pereira AC, Chiapero-Stanke L, Delinassios GJ, et al. Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med 2012; 18: 565-576.
  • 29.
    Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 2015; 75: 3596-3607.
  • 30.
    Zah E, Lin M-Y, Silva-Benedict A, Jensen MC, Chen YY. ADDENDUM: T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 2016; 4: 639-641.
  • 31.
    Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, et al. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2013; 334: 237-244.
  • 32.
    Cheadle E, Rothwell D, Bridgeman J, Sheard V, Hawkins R, Gilham D. Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther 2012; 19: 1114-1120.
  • 33.
    Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, et al. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 2013; 1: 43-53.
  • 34.
    Kim DW, Cho JY. Recent advances in allogeneic CAR-T cells. Biomolecules 2020; 10: 263.
  • 35.
    Bagheri S, Safaie Qamsari E, Yousefi M, Riazi-Rad F, Sharifzadeh Z. Targeting the 4-1BB costimulatory molecule through single chain antibodies promotes the human T-cell response. Cell Mol Biol Lett 2020; 25: 1-13.
  • 36.
    Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE, et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discover 2018; 8: 972-987.
  • 37.
    Mir MA. editor T-Cell Costimulation and Its Applications in Diseases 2015.##https://doi.org/10.1016/B978-0-12-802585-7.00006-6.
  • 38.
    Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 signaling receptor molecule. J Immunol 2001; 167: 6123-6131.
  • 39.
    Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 2019; 8: 472.
  • 40.
    Zhao Z, Condomines M, van der Stegen SJ, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 2015; 28: 415-428.
  • 41.
    Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Nat Acad Sci 2009; 106: 3360-3365.
  • 42.
    Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453-1464.
  • 43.
    Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019; 25: 82-88.
  • 44.
    Helsen CW, Hammill JA, Lau VW, Mwawasi KA, Afsahi A, Bezverbnaya K, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun 2018; 9: 1-13.
  • 45.
    Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov 2018; 4: 1-13.
  • 46.
    Han S, Latchoumanin O, Wu G, Zhou G, Hebbard L, George J, et al. Recent clinical trials utilizing chimeric antigen receptor T cells therapies against solid tumors. Cancer Lett 2017; 390: 188-200.
  • 47.
    Barde I, Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc Neurosci 2010; 53.##https://doi.org/10.1002/0471142301.ns0421s53.
  • 48.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4: 132ra53.
  • 49.
    Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687-696.
  • 50.
    MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther 2017; 25: 949-961.
  • 51.
    Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Translat Res 2013; 161: 265-283.
  • 52.
    Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005; 25: 2085-2094.
  • 53.
    Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty to genetically modify clinicalgrade T cells to target CD 19. Immunol Rev 2014; 257: 181-190.
  • 54.
    Manuri PV, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S, et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Human Gene Ther 2010; 21: 427-437.
  • 55.
    Nakazawa Y, Huye LE, Salsman VS, Leen AM, Ahmed N, Rollins L, et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther 2011; 19: 2133-2143.
  • 56.
    Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol 2021; 147: 3725-3734.
  • 57.
    Yoon S, Lee J, Cho H, Kim E, Kim H, Park M, et al. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 2009; 16: 489-497.
  • 58.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res 2014; 2: 112-120.
  • 59.
    Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A, Abolhassani M. T cell engineered with a novel nanobodybased chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life 2019; 71: 1259-1267.
  • 60.
    Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, et al. Construction of a chimeric antigen receptor bearing a nanobody against prostate a specific membrane antigen in prostate cancer. J Cell Biochem 2019; 120: 10787-10795.
  • 61.
    Hassani M, Taheri FH, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, et al. Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J 2020; 24: 81.
  • 62.
    Delhove JM, Qasim W. Genome-edited T cell therapies. Curr Stem Cell Rep 2017; 3: 124-136.
  • 63.
    Ren J, Zhao Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 2017; 8: 634-643.
  • 64.
    Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 2015; 112: 10437-10442.
  • 65.
    Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for "off-the-shelf" adoptive T-cell immunotherapies. Cancer Res 2015; 75: 3853-3864.
  • 66.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Translat Med 2017; 9: 2013.
  • 67.
    Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Translat Med 2016; 8: 320ra3.##https://doi.org/10.1126/scitranslmed.aad5222.
  • 68.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017; 543: 113-117.
  • 69.
    Global Cell And Gene Therapy Market [cited 2021 Mar 28]. Available from: https://www.thebusinessresearchcompany.com/report/cell-and-gene-therapy-global-market-report-2020-30-covid-19-growth-and-change.
  • 70.
    Global Car-T Therapy Pipeline Analysis Market Data And Industry Growth Analysis [cited 2021 March 28]. Available from: https://www.thebusinessresearchcompany.com/report/car-t-therapy-pipeline-analysis-global-market-report.
  • 71.
    Morrison C. Fresh from the biotech pipeline--2017. Nat Biotechnol 2018; 36: 131-137.
  • 72.
    T-cell Therapy Market Size & Share Report, 2021-2028 [cited 2021 April 7]. Available from: https://www.grandviewresearch.com/industry-analysis/t-cell-therapy-market.##.
  • 73.
    Mullard A. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov 2021; 20: 166-167.
  • 74.
    Highlights of prescribing Information, Kymriah [cited 2020 July 7]. Available from: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/kymriah.pdf.
  • 75.
    Highlights of prescribing information, Yescarta [cited 2020 July 7]. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM581226.pdf.
  • 76.
    U.S. FDA Approves Kite's Tecartus, the First and Only CAR T Treatment for Relapsed or Refractory Mantle Cell Lymphoma [press release]. July 24 2020.
  • 77.
    Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382: 1331-1342.
  • 78.
    Romero D. KTE-X19 active in MCL. Nat Rev Clin Oncol 2020; 17: 336.
  • 79.
    Slater H. FDA Will Not Complete Review of BLA for Lisocabtagene Maraleucel By PDUFA Date 2020 [cited 2021 Feb 26]. Available from: https://www.cancernetwork.com/view/fda-will-not-complete-review-of-bla-for-lisocabtagene-maraleucel-by-pdufa-date.
  • 80.
    Sternberg A. Liso-cel Receives FDA Approval for the Treatment of R/R Large B-Cell Lymphoma cancer network [cited 2021 Feb 26]. Available from: https://www.cancernetwork.com/view/liso-cel-receives-fda-approval-for-the-treatment-of-r-r-large-b-cell-lymphoma.
  • 81.
    Romero D. Initial results with liso-cel. Nat Rev Clin Oncol 2020; 17: 654.
  • 82.
    Roex G, Feys T, Beguin Y, Kerre T, Poir X, Lewalle P, et al. Chimeric antigen receptor-T-cell therapy for B-cell hematological malignancies: an update of the pivotal clinical trial data. Pharmaceutics 2020; 12: 194.
  • 83.
    Sharma P, Kanapuru B, George B, Lin X, Xu Z, Bryan WW, et al. FDA approval summary: idecabtagene vicleucel for relapsed or refractory multiple myeloma. Clin Cancer Res 2022.
  • 84.
    VICLEUCEL I. BCMA-Directed CAR T cells in relapsed refractory multiple myeloma: highlights from SOHO 2021. J Adv Pract Oncol 2022; 13: 23-25.
  • 85.
    Yip A, Webster RM. The market for chimeric antigen receptor T cell therapies. Nat Rev Drug Discov 2018; 17: 161-162.
  • 86.
    Nosrati M, Hasanzad M, Nikfar S. A review on precision medicine and conducting pharmacogenetics tests of drugs. Koomesh 2022; 24: 230-236. (Persian).
  • 87.
    Bristol Myers finally wins FDA approval for cancer cell therapy BiopharmaDive [cited 2021 Mar 29]. Available from: https://www.biopharmadive.com/news/bristol-myers-liso-cel-fda-approval-car-t/594660/.
  • 88.
    Prasad V. Tisagenlecleucel-the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol 2018; 15: 11-12.
  • 89.
    Court E. Novartis' CAR-T gene therapy, the first approved by FDA, to cost $475,000 MarketWatch [cited 2020 July 11]. Available from: https://www.marketwatch.com/story/novartis-car-t-gene-therapy-the-first-approved-by-fda-to-be-priced-based-on-cancer-patients-outcomes-2017-08-30.
  • 90.
    Lin JK, Muffly LS, Spinner MA, Barnes JI, Owens DK, Goldhaber-Fiebert JD. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J Clin Oncol 2019; 37: 2105-2119.
  • 91.
    Schultz L, Mackall C. Driving CAR T cell translation forward. Sci Translat Med 2019; 11: eaaw2127.
  • 92.
    Harrison RP, Zylberberg E, Ellison S, Levine BL. Chimeric antigen receptor-T cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods. Cytotherapy 2019; 21: 224-233.
  • 93.
    Geethakumari PR, Dhakal B, Ramasamy DP, Kansagra AJ. CAR T-Cell therapy: current practice and future solutions to optimize patient access. J Clin Pathways 2021; 7: 54-62.##https://doi.org/10.25270/jcp.2021.03.00002.
  • 94.
    Cao J, Wang G, Cheng H, Wei C, Qi K, Sang W, et al. Potent antileukemia activities of humanized CD19targeted Chimeric antigen receptor T (CART) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2018; 93: 851-858.
  • 95.
    Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126: 2123-2138.
  • 96.
    Drent E, Poels R, Ruiter R, van de Donk NW, Zweegman S, Yuan H, et al. Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells. Clin Cancer Res 2019; 25: 4014-4025.
  • 97.
    Iri-Sofla FJ, Rahbarizadeh F, Ahmadvand D, Rasaee MJ. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase. Exp Cell Res 2011; 317: 2630-2641.
  • 98.
    Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013; 1: 26-31.
  • 99.
    Lamers CH, Willemsen R, van Elzakker P, van Steenbergen-Langeveld S, Broertjes M, Oosterwijk-Wakka J, et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 2011; 117: 72-82.
  • 100.
    Caserta S, Kleczkowska J, Mondino A, Zamoyska R. Reduced functional avidity promotes central and effector memory CD4 T cell responses to tumor-associated antigens. J Immunol 2010; 185: 6545-6554.
  • 101.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843-851.
  • 102.
    Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H, de Bruijn J, et al. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol Ther 2017; 25: 1946-1958.
  • 103.
    Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 2013; 19: 3153-3164.
  • 104.
    Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 2018; 14: 317-324.
  • 105.
    Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, et al. In vivo fate and activity of second-versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin's lymphomas. Mol Ther 2018; 26: 2727-2737.
  • 106.
    Knkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, et al. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas-FasL-dependent AICD. Cancer Immunol Res 2015; 3: 368-379.
  • 107.
    Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009; 183: 5563-5574.
  • 108.
    Guedan S, Madar A, Casado-Medrano V, Shaw C, Wing A, Liu F, et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J Clin Invest 2020; 130: 3087-3097.
  • 109.
    Boucher JC, Li G, Shrestha B, Cabral M, Morrissey D, Guan L, et al. Mutation of the CD28 costimulatory domain confers decreased CAR T cell exhaustion. Blood 2018; 132: 966.##https://doi.org/10.1182/blood-2018-99-110645.
  • 110.
    Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Human Gene Ther 2005; 16: 1241-1246.
  • 111.
    Liu J, Zhou G, Zhang L, Zhao Q. Building potent chimeric antigen receptor T cells with CRISPR genome editing. Front Immunol 2019; 10: 456.
  • 112.
    cell trial data [cited 2020 July 12]. Available from: https://celltrials.org/maps-cell-and-gene-therapy/cellular-immunotherapy-companies.
comments

Leave a comment here

Share on
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles