Evaluating the neuroprotective effects of pitavastatin in reperfusion injuries in the focal and transient model of cerebral ischemia in rat

authors:

avatar Fatemeh Mansouri , avatar Mohammad Taghi Mohammadi , * , avatar Shima Shahyad ORCID , avatar Mohammad Taghi Mohammadi


how to cite: Mansouri F, Mohammadi M T, Shahyad S, Mohammadi M T. Evaluating the neuroprotective effects of pitavastatin in reperfusion injuries in the focal and transient model of cerebral ischemia in rat. koomesh. 2023;25(3):e152831. 

Abstract

Introduction: Pitavastatin is in the statins class and is mainly used for the treatment of dyslipidemia and hypercholesterolemia. According to the anti-inflammatory, angiogenic, antioxidant, anti-apoptotic, and antiplatelet effects of pitavastatin, in the present study, the protective effects were investigated against the reperfusion injuries and edema in the animal model of local and transient cerebral ischemia. Materials and Methods: 21 rats were assigned into three groups; sham, control ischemic, and treated ischemic groups. Brain ischemia/reperfusion was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24-hour reperfusion. Rats received pitavastatin intraperitoneally at a dose of 4 mg/kg immediately after termination of MCAO. Neurological deficit score (NDS), infarct volume, and brain swelling, as an index of edema, were assessed 24 hours after termination of MCAO. Results: MCAO induced neurological dysfunction (3.28±0.28) and brain infarction in the control ischemic group (299±21 mm3) accompanied by brain swelling (11.83±2.61 %). Administration of pitavastatin in the treated ischemic rats significantly reduced neurological dysfunction (1.57±0.20), brain infarction (117±28 mm3), and brain swelling (4.75±0.80 %). Also, pitavastatin considerably decreased the mortality of rats in the treated ischemic group. Conclusion: The findings of the present study indicated that pitavastatin, as a potent neuroprotective agent, effectively reduces reperfusion-induced brain injuries and brain edema independently of cholesterol-lowering effects in the experimental model of ischemic stroke.

References

  • 1.

    Feske SK. Ischemic Stroke. Am J Med 2021; 134: 1457-1464.

  • 2.

    Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and Ischemic Stroke. Front Immunol 2022; 13: 828447.

  • 3.

    Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2022;49.

  • 4.

    Mohammadi R, Ramezani S, Mohammadi M, Fatemi E. The effect of Transcranial direct current stimulation (tDCS) on the lower limb function with & without Step exercise in chronic stroke patients: a randomized control clinical trial. Koomesh 2021; 23: 320-326. (Persian).##https://doi.org/10.52547/koomesh.23.3.320.

  • 5.

    Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, et al. Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 2022; 13: 911661.

  • 6.

    Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 2014; 8: 231.

  • 7.

    Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Correction To: Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7: 278.

  • 8.

    Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7: 215.

  • 9.

    Li X, Ma N, Xu J, Zhang Y, Yang P, Su X, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev 2021; 2021: 1587922.

  • 10.

    Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46: 1650-1667.

  • 11.

    Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225: 107848.

  • 12.

    Moroi M, Nagayama D, Hara F, Saiki A, Shimizu K, Takahashi M, et al. Outcome of pitavastatin versus atorvastatin therapy in patients with hypercholesterolemia at high risk for atherosclerotic cardiovascular disease. Int J Cardiol 2020; 305: 139-146.

  • 13.

    Taguchi I, Iimuro S, Iwata H, Takashima H, Abe M, Amiya E, et al. High-dose versus low-dose pitavastatin in japanese patients with stable coronary artery disease (REAL-CAD): a randomized superiority trial. Circulation 2018; 137: 1997-2009.

  • 14.

    Al-Ghoul WM, Kim MS, Fazal N, Azim AC, Ali A. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. Results Immunol 2014; 4: 14-22.

  • 15.

    Tu Q, Cao H, Zhong W, Ding B, Tang X. Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects. Neural Regen Res 2014; 9: 268.

  • 16.

    Faghihi N, Mohammadi MT. Anticonvulsant and antioxidant effects of pitavastatin against pentylenetetrazol-induced kindling in mice. Adv Pharm Bull 2017; 7: 291-298.

  • 17.

    Zhao W, Xiao ZJ, Zhao SP. The benefits and risks of statin therapy in ischemic stroke: a review of the literature. Neurol India 2019; 67: 983.

  • 18.

    Christophe B, Karatela M, Sanchez J, Pucci J, Connolly ES. Statin therapy in ischemic stroke models: a meta-analysis. Transl Stroke Res 2020; 11: 590-600.

  • 19.

    Olmastroni E, Molari G, De Beni N, Colpani O, Galimberti F, Gazzotti M, et al. Statin use and risk of dementia or Alzheimer's disease: a systematic review and meta-analysis of observational studies. Eur J Prev Cardiol 2022; 29: 804-814.

  • 20.

    Yaribeygi H, Faghihi N, Mohammadi MT, Sahebkar A. Effects of atorvastatin on myocardial oxidative and nitrosative stress in diabetic rats. Comp Clin Path 2018; 27: 691-697.##https://doi.org/10.1007/s00580-018-2652-2.

  • 21.

    Jafari M, Hojati V, Khaksari M, Vaezi G. Effect of simvastatin on memory disorders and Hippocampal cell death in the model of the fetal alcoholic syndrome in male rats. Koomesh 2022; 24: 826-834. (Persian).

  • 22.

    Sugimoto H, Konno S, Nomoto N, Nakazora H, Murata M, Kitazono H, et al. The long-term effects of pitavastatin on blood lipids and platelet activation markers in stroke patients: impact of the homocysteine level. PLoS One 2014; 9: e113766.

  • 23.

    Sadeq A, Elnour AA, Farah HF, Ramadan A, Baraka MA, Don J, et al. A systematic review of randomized clinical trials on the efficacy and safety of pitavastatin. Curr Rev Clin Exp Pharmacol 2022.

  • 24.

    Xu Y, Chen M, Xiao Q, Zhao Y, Tian J. Observation of the clinical effects of Danhong injections combined with pitavastatin on blood lipid regulation in patients with ischemic strokes complicated with lipid abnormalities. Int J Clin Exp Med 2019; 12: 3364-3375.

  • 25.

    Kumagai R, Oki C, Muramatsu Y, Kurosaki R, Kato H, Araki T. Pitavastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, reduces hippocampal damage after transient cerebral ischemia in gerbils. J Neural Transm (Vienna) 2004; 111: 1103-1120.

  • 26.

    Himeda T, Hayakawa N, Tounai H, Sakuma M, Kato H, Araki T. Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Neuropsychopharmacology 2005; 30: 2014-2025.

  • 27.

    Tounai H, Hayakawa N, Kato H, Araki T. Immunohistochemical study on distribution of NF-kappaB and p53 in gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Metab Brain Dis 2007; 22: 89-104.

  • 28.

    Wakabayashi K, Suzuki H, Fukumoto Y, Obara H, Kakuma T, Sakuma I, et al. Comorbidities associated with residual cardiovascular risk in patients with chronic coronary syndrome receiving statin therapy- subanalysis of the REAL-CAD trial. Circ Rep 2022; 4: 422-428.

  • 29.

    Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91.

  • 30.

    Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj 2017; 31: 1142-1150.

  • 31.

    Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Dis 2018; 27: 3053-3065.

  • 32.

    Rasouli Vani J, Taghi Mohammadi M, Sarami Foroshani M, Rezazade E. Evaluation of the neuroprotective and antioxidant effects of Dorema aucheri extract on cerebral ischaemia-reperfusion injury in rats. Pharm Biol 2019; 57: 255-262.

  • 33.

    Prado DS, Damasceno LE, Sonego AB, Rosa MH, Martins TV, Fonseca MD, et al. Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism. Int Immunopharmacol 2021; 91: 107278.

  • 34.

    Iqubal A, Sharma S, Sharma K, Bhavsar A, Hussain I, Iqubal MK, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211: 172-181.

  • 35.

    Matsubara S, Tanaka T, Tomari S, Fukuma K, Ishiyama H, Abe S, et al. Statin treatment can reduce incidence of early seizure in acute ischemic stroke: A propensity score analysis. Sci Rep 2020; 10: 1-7.

  • 36.

    Cui X, Fu Z, Wang M, Nan X, Zhang B. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation. Neurol Res 2018; 40: 391-397.

  • 37.

    Matsumoto T, Yoshino S, Furuyama T, Morisaki K, Nakano K, Koga JI, et al. Pitavastatin-incorporated nanoparticles for chronic limb threatening ischemia: a phase I/IIa clinical trial. J Atheroscler Thromb 2022; 29: 731-746.

  • 38.

    Aoki T, Kataoka H, Ishibashi R, Nakagami H, Nozaki K, Morishita R, et al. Pitavastatin suppresses formation and progression of cerebral aneurysms through inhibition of the nuclear factor kappaB pathway. Neurosurgery 2009; 64: 357-365.

  • 39.

    Kurosaki R, Muramatsu Y, Kato H, Araki T. Protective effect of pitavastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, on ischemia-induced neuronal damage. Neurol Res 2004; 26: 684-691.

  • 40.

    Cui X, Fu Z, Wang M, Nan X, Zhang B. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation. Neurol Res 2018; 40: 391-397.

  • 41.

    Massonnet B, Normand S, Moschitz R, Delwail A, Favot L, Garcia M, et al. Pharmacological inhibitors of the mevalonate pathway activate pro-IL-1 processing and IL-1 release by human monocytes. Eur cytokine netw 2009; 20: 112-120.

  • 42.

    Normand S, Massonnet B, Delwail A, Favot L, Cuisset L, Grateau G, et al. Specific increase in caspase-1 activity and secretion of IL-1 family cytokines: a putative link between mevalonate kinase deficiency and inflammation. Eur cytokine netw 2009; 20: 101-107.

  • 43.

    Fujimoto T, Morofuji Y, Kovac A, Erickson MA, Deli MA, Niwa M, et al. Pitavastatin ameliorates lipopolysaccharide-induced blood-brain barrier dysfunction. Biomedicines 2021; 9: 837.

  • 44.

    Morofuji Y, Nakagawa S, So G, Hiu T, Horai S, Hayashi K, et al. Pitavastatin strengthens the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2010; 30: 727-735.

  • 45.

    Kayano R, Morofuji Y, Nakagawa S, Fukuda S, Watanabe D, Ozawa H, et al. In vitro analysis of drugs that improve hyperglycemia-induced blood-brain barrier dysfunction. Biochem Biophys Res Commun 2018; 503: 1885-1890.

  • 46.

    Li Z, Zhang J, Xue Y, He Y, Tang L, Ke M, et al. Pitavastatin stimulates retinal angiogenesis via HMG-CoA reductase-independent activation of RhoA-mediated pathways and focal adhesion. Graefes Arch Clin Exp Ophthalmol 2021; 259: 2707-2716.

  • 47.

    Matsumoto T, Yamashita S, Yoshino S, Kurose S, Morisaki K, Nakano K, et al. Therapeutic arteriogenesis/angiogenesis for peripheral arterial disease by nanoparticle-mediated delivery of pitavastatin into vascular endothelial cells. Ann Vasc Dis 2020; 13: 4-12.