Upregulation of Osteopontin in Metastatic Mouse Breast Cancer Cells

authors:

avatar Naeemeh Rezapour , avatar mohammad kamalabadi farahani ORCID , * , avatar Vajiheh Zarrinpour , avatar Amir Atashi ORCID


how to cite: Rezapour N, kamalabadi farahani M, Zarrinpour V, Atashi A. Upregulation of Osteopontin in Metastatic Mouse Breast Cancer Cells. koomesh. 2023;25(4):e152844. 

Abstract

Introduction: Osteopontin (OPN) is a glycosylated phosphoprotein found in the extracellular matrix that is expressed in a variety of body tissues and is involved in a variety of pathobiological processes such as cancer and metastasis. Several studies have reported increased OPN gene expression in advanced stages of breast cancer, but no studies have been conducted to investigate the relationship between OPN and metastasis in breast cancer. Materials and Methods: After the development of an animal model of breast cancer using the 4T1 cell line, primary and metastatic tumor cells were isolated from the tumor mass, lung, and brain of cancerous mice, multiplied, and named 4T1T, 4T1L, and 4T1B, respectively. The expression of OPN in these cells has been analyzed using real-time polymerase chain reaction. Results: According to our findings, metastatic tumor cells significantly increase their OPN expression. OPN expression was increased 2.3-fold and 3.25-fold in 4T1L and 4T1B cells, respectively, when compared to primary tumor cells. Conclusion: These findings provided important insights into OPN expression in the metastatic cascade of breast cancer for the first time. In this account, the analysis of the molecular properties of metastatic tumor cells can help researchers better understand the molecular and genetic aspects of chemoresistance, as well as design targeted therapeutic strategies to combat breast cancer metastasis.

References

  • 1.

    Robinson NJ, Taylor DJ, Schiemann WP. Stem cells, immortality, and the evolution of metastatic properties in breast cancer: Telomere maintenance mechanisms and metastatic evolution. J Cancer Metastasis Treat 2019; 39: 5.##https://doi.org/10.20517/2394-4722.2019.15.

  • 2.

    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331: 1559-1564.##https://doi.org/10.1126/science.1203543.

  • 3.

    Van Denderen BJ, Thompson EW. The to and fro of tumour spread. Nature 2013; 493: 487-488.##https://doi.org/10.1038/493487a.

  • 4.

    Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19: 716-732.##https://doi.org/10.1038/s41568-019-0213-x.

  • 5.

    Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting angiogenesis in breast cancer: current evidence and future perspectives of novel anti-angiogenic approaches. Front Pharmacol 2022; 13: 838133.##https://doi.org/10.3389/fphar.2022.838133.

  • 6.

    Melzer C, von der Ohe J, Hass R. Breast carcinoma: from initial tumor cell detachment to settlement at secondary sites. BioMed Res Int 2017; 2017.##https://doi.org/10.1155/2017/8534371.

  • 7.

    Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal 2016; 14: 1-12.##https://doi.org/10.1186/s12964-016-0143-0.

  • 8.

    Zhao H, Chen Q, Alam A, Cui J, Suen KC, Soo AP, et al. The role of osteopontin in the progression of solid organ tumour. Cell Death Diseas 2018; 9: 1-15.##https://doi.org/10.1038/s41419-018-0391-6.

  • 9.

    Hao C, Cui Y, Owen S, Li W, Cheng S, Jiang WG. Human osteopontin: Potential clinical applications in cancer. Int J Mol Med 2017; 39: 1327-1337.##https://doi.org/10.3892/ijmm.2017.2964.

  • 10.

    Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. J Cell Biochem 1998; 72: 92-102.##https://doi.org/10.1002/(SICI)1097-4644(1998)72:30/31+<92::AID-JCB13>3.0.CO;2-A.

  • 11.

    Pagel CN, Wasgewatte Wijesinghe DK, Taghavi Esfandouni N, Mackie EJ. Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle. J Cell Commun Signal 2014; 8: 95-103.##https://doi.org/10.1007/s12079-013-0217-3.

  • 12.

    Senger DR, Wirth DF, Hynes RO. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 1979; 16: 885-893.

  • 13.

    Wei R, Wong JPC, Kwok HF. Osteopontin--a promising biomarker for cancer therapy. J Cancer 2017; 8: 2173.##https://doi.org/10.7150/jca.20480.

  • 14.

    Fisher L, Torchia D, Fohr B, Young M, Fedarko N. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 2001; 280: 460-465.##https://doi.org/10.1006/bbrc.2000.4146.

  • 15.

    Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 1087-1097.

  • 16.

    Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055-1061.##https://doi.org/10.1172/JCI12980.

  • 17.

    Kamalabadi-Farahani M. Down-regulation of death receptor-5 in metastatic cascade of triple-negative breast cancer. Turk J Oncol 2020; 1.

  • 18.

    Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells. J Drug Delivery Sci Technol 2021; 61: 102107.##https://doi.org/10.1016/j.jddst.2020.102107.

  • 19.

    Raeisizadeh M, Saki Malehi A, Maraghi E, Bahmanziari M, Seghatoleslami M, Hoseinzadeh M. Effect of hormone receptors and Her-2 status on metastasis status in patients with breast cancer using logistic regression model. Koomesh 2021; 23: 748-755. (Persian).

  • 20.

    Johari B, Ghorbani R, Heidari S, Rashidi S, Madanchi H. Anti-cancer effects of the combined treatment of trastuzumab and decoy oligodeoxynucleotides to target STAT3 transcription factor on SK-BR-3 breast cancer cell line. Koomesh 2023; 25: 71-82. (Persian).

  • 21.

    Zduniak K, Agrawal A, Agrawal S, Hossain MM, Ziolkowski P, Weber GF. Osteopontin splice variants are differential predictors of breast cancer treatment responses. BMC Cancer 2016; 16: 1-12.##https://doi.org/10.1186/s12885-016-2484-x.

  • 22.

    Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37: 131-141.##https://doi.org/10.1016/j.matbio.2014.03.001.

  • 23.

    Likui W, Hong W, Shuwen Z, Yuangang Y, Yan W. The potential of osteopontin as a therapeutic target for human colorectal cancer. J Gastrointest Surg 2011; 15: 652-659.##https://doi.org/10.1007/s11605-011-1445-6.

  • 24.

    Tuck AB, O'Malley FP, Singhal H, Tonkin KS. Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 1997; 121: 578.

  • 25.

    Mitas M, Mikhitarian K, Walters C, Baron PL, Elliott BM, Brothers TE, et al. Quantitative realtime RTPCR detection of breast cancer micrometastasis using a multigene marker panel. Int J Cancer 2001; 93: 162-171.##https://doi.org/10.1002/ijc.1312.

  • 26.

    Rudland PS, Platt-Higgins A, El-Tanani M, de Silva Rudland S, Barraclough R, Winstanley JH, et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 2002; 62: 3417-3427.

  • 27.

    Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, et al. Osteopontin expression and distribution in human carcinomas. Am J Pathol 1994; 145: 610.

  • 28.

    Tuck AB, Chambers AF. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 2001; 6: 419-429.##https://doi.org/10.1023/A:1014734930781.

  • 29.

    Tuck AB, Elliott BE, Hota C, Tremblay E, Chambers AF. Osteopontininduced, integrindependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem 2000; 78: 465-475.##https://doi.org/10.1002/1097-4644(20000901)78:3<465::AID-JCB11>3.0.CO;2-C.

  • 30.

    Kovacheva M, Zepp M, Schraad M, Berger S, Berger MR. Conditional knockdown of osteopontin inhibits breast cancer skeletal metastasis. Int J Mol Sci 2019; 20: 4918.##https://doi.org/10.3390/ijms20194918.

  • 31.

    Reufsteck C, Lifshitz-Shovali R, Zepp M, Buerle T, Kbler D, Golomb G, et al. Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metastasis 2012; 29: 441-456.##https://doi.org/10.1007/s10585-012-9462-8.

  • 32.

    Cui R, Takahashi F, Ohashi R, Gu T, Yoshioka M, Nishio K, et al. Abrogation of the interaction between osteopontin and v3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer 2007; 57: 302-310.##https://doi.org/10.1016/j.lungcan.2007.03.019.

  • 33.

    Kariya Y, Kariya Y. Osteopontin in Cancer: mechanisms and therapeutic targets. Int J Translat Med 2022; 2: 419-447.##https://doi.org/10.3390/ijtm2030033.

  • 34.

    Tan Y, Zhao L, Yang YG, Liu W. The role of osteopontin in tumor progression through tumor-associated macrophages. Front Oncol 2022; 12.##https://doi.org/10.3389/fonc.2022.953283.