Organoids: from engineering to medical applications, a review article

authors:

avatar Lari Lari , * , avatar Fatemeh Jameie , avatar Milad Rezaei


How To Cite Lari L, Jameie F, Rezaei M. Organoids: from engineering to medical applications, a review article. koomesh. 2023;25(6):e152856. 

Abstract

Introduction: Organoids are small and three-dimensional structures that are similar to natural body organs in terms of components and functions. The technology of using organoids is a new and exciting issue that has created the prospect that individual and complex sets of tissues can be created in the laboratory environment for each patient. This review aims to summarise the current knowledge in the field of designing organoids. For this purpose, we examine the production technology of different tissue organoids and discuss the prospects and disadvantages of using organoids. Materials and Methods: The present study is a descriptive review study. In this research, published articles related to this research were searched in PubMed and Scopus databases. Articles in the field of matrix design and cells used in organoid tissue engineering as well as new findings in organoid design were used in this study. Conclusion: Organoid tissue culture provides scientists a detailed view of how organs form and grow, as well as new insights into human development and disease, Also the opportunity to study how drugs interact with these “small organs" potentially revolutionizes the field of drug development and opens new approaches for personalized medicine. It is hoped that this article will pave the way for the use of this technology in Iran.

References

  • 1.

    Roghan Nezhad M, Lari R, Mahdavi Shahri N, Izi L, Birjandi nejad A. Investigation of the interaction between L929 cell line with human 3D skin matrix. Sci J Kurdistan Univ Med Sci 2016; 21: 22-33. (Persian).

  • 2.

    Abedin E, Lari R, Mahdavi Shahri N, Fereidoni M. Development of a demineralized and decellularized human epiphyseal bone scaffold for tissue engineering: A histological study. Tissue Cell 2018; 55: 46-52.

  • 3.

    Amini Z, Lari R. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 2021; 69: 101494.

  • 4.

    Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014; 345: 1247125.

  • 5.

    Clevers H. Modeling development and disease with organoids. Cell 2016; 165: 1586-1597.

  • 6.

    Cal G, Sina B, De Coppi P, Giobbe GG, Gerli MF. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11: 1058970.

  • 7.

    Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R. A murine tumor producing a matrix of basement membrane. J Exp Med 1977; 145: 204-220.

  • 8.

    Timmins NE, Nielsen LK. Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med 2007; 140: 141-151.

  • 9.

    Turner DA, Baillie-Johnson P, Martinez Arias A. Organoids and the genetically encoded self-assembly of embryonic stem cells. Bioessays 2016; 38: 181-191.

  • 10.

    Kalabis J, Wong GS, Vega ME, Natsuizaka M, Robertson ES, Herlyn M, et al. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat Protoc 2012; 7: 235-246.

  • 11.

    Aoki S, Takezawa T, Sugihara H, Toda S. Progress in cell culture systems for pathological research. Pathol Int 2016; 66: 554-562.

  • 12.

    Corr C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319: C151-c165.

  • 13.

    Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020; 21: 571-584.

  • 14.

    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459: 262-265.

  • 15.

    Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 2018; 22: 454-467.e6.

  • 16.

    Maru Y, Hippo Y. Current status of patient-derived ovarian cancer models. Cells 2019; 8.

  • 17.

    Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grtzmann K, et al. Human gastric cancer modelling using organoids. Gut 2019; 68: 207-217.

  • 18.

    Wang J, Li X, Chen H. Organoid models in lung regeneration and cancer. Cancer Lett 2020; 475: 129-135.

  • 19.

    Wang Z, Wang SN, Xu TY, Miao ZW, Su DF, Miao CY. Organoid technology for brain and therapeutics research. CNS Neurosci Ther 2017; 23: 771-778.

  • 20.

    Driehuis E, van Hoeck A, Moore K, Kolders S, Francies HE, Gulersonmez MC, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA 2019; 116: 26580-26590.

  • 21.

    Hu LF, Yang X, Lan HR, Fang XL, Chen XY, Jin KT. Preclinical tumor organoid models in personalized cancer therapy: Not everyone fits the mold. Exp Cell Res 2021; 408: 112858.

  • 22.

    Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF, Kranenburg OW, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis Oncol 2021; 5: 30.

  • 23.

    Zhou C, Wu Y, Wang Z, Liu Y, Yu J, Wang W, et al. Standardization of organoid culture in cancer research. Cancer Med 2023; 12: 14375-14386.

  • 24.

    Bateman JF, Boot-Handford RP, Lamand SR. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 2009; 10: 173-183.

  • 25.

    Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4: 165-178.

  • 26.

    Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15: 378-386.

  • 27.

    Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater 2020; 5: 539-551.

  • 28.

    Kratochvil MJ, Seymour AJ, Li TL, Paca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nat Rev Mater 2019; 4: 606-622.

  • 29.

    Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, et al. Growth of epithelial organoids in a defined hydrogel. Adv Mater 2018; 30: e1801621.

  • 30.

    Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009; 15: 701-706.

  • 31.

    Jabaji Z, Brinkley GJ, Khalil HA, Sears CM, Lei NY, Lewis M, et al. Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS One 2014; 9: e107814.

  • 32.

    Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, et al. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med 2016; 5: 970-979.

  • 33.

    Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020; 584: 535-546.

  • 34.

    Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordez-Morn P, et al. Designer matrices for intestinal stem cell and organoid culture. Nature 2016; 539: 560-564.

  • 35.

    Cruz-Acua R, Quirs M, Farkas AE, Dedhia PH, Huang S, Siuda D, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 2017; 19: 1326-1335.

  • 36.

    Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 2014; 5: 4324.

  • 37.

    Rashidi N, Tafazzoli-Shadpour M, Haghighipour N, Khani MM, Zali H. Effect of cyclic uniaxial strain on morphology of mesenchymal stem cells during differentiation to smooth muscle cells. Koomesh 1394; 17: 374-392. (Persian).

  • 38.

    Izi L, Lari R, Mahdavi shahri N, Rejhan Nejad M, Birjandi Nejad A. Preparation of human 3D skin matrix and investigation of the interaction between rat adherent bone marrow cells and prepared matrix. J Sabzevar Univ Med Sci 2016; 23: 241-252. (Persian(.

  • 39.

    Mahdavi-Shahri N, Akbarzadeh-Niaki M, Moghadam-Matin M, Fereidoni M, Lari R. The histological study of the interactions between Rabbit decellularized esophagus scaffold and the blastema tissue obtained from the Pinna of New Zealand White Rabbit. J Isfahan Med School 2013; 31: 1865-1875. (Persian).

  • 40.

    Samaremousavi S, Saadatfar Z, Mahdavi SHahri N, Behnam Rassouli M, Lari R. Cell matrix interaction in decellularized pancreatic natural 3D scaffold with heparin sulfate. Int J Pharma Phytopharmacol Res 2019; 9.

  • 41.

    Alavi M, Mahdavi SHahri N, Moghaddam Matin M, Fereidoni M, Lari R, Rad SB. Preparation and evaluation of a three-dimensional natural bioscaffold from human gingival stroma for tissue engineering. 13th Iranian Congress of Biochemistry and 5th International Congress of Biochemistry and Molecular Biology 2013. (Persian).

  • 42.

    Heo JH, Kang D, Seo SJ, Jin Y. Engineering the extracellular matrix for organoid culture. Int J Stem Cells 2022; 15: 60-69.

  • 43.

    Mohseni kouchesfahani H, Ebrahimi Barough S, Ai j, Anbar H. Endometrial stem cells differentiation into neural cells by LY294002 small molecule. Koomesh 1395; 18: 62-70. (Persian(.

  • 44.

    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005; 85: 635-678.

  • 45.

    Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020; 16: 3-32.

  • 46.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.

  • 47.

    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011; 8: 409-412.

  • 48.

    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322: 945-949.

  • 49.

    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85: 348-362.

  • 50.

    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hmlinen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458: 766-770.

  • 51.

    Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, et al. A nonviral minicircle vector for deriving human iPS cells. Nature Methods 2010; 7: 197-199.

  • 52.

    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 4: 472-476.

  • 53.

    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7: 618-630.

  • 54.

    Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011; 8: 633-638.

  • 55.

    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341: 651-654.

  • 56.

    Hawley RG. Does retroviral insertional mutagenesis play a role in the generation of induced pluripotent stem cells? Mol Ther 2008; 16: 1354-1355.

  • 57.

    Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 2011; 13: 497-505.

  • 58.

    Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 2016; 18: 573-586.

  • 59.

    Chun YS, Byun K, Lee B. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anat Cell Biol 2011; 44: 245-255.

  • 60.

    Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep 2018; 14: 323-336.

  • 61.

    McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 2017; 144: 958-962.

  • 62.

    Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, et al. The use of stem cell-derived organoids in disease modeling: An Update. Int J Mol Sci 2021; 22.

  • 63.

    Kadivar NF, Yagmaei P, Kargar S, Ghazizadeh L. Effects of rat mesenchymal stem cells as a feeder layer in isolation and culture of mouse embryonic stem cells. Koomesh 1388; 10: 161-170. (Persian).

  • 64.

    Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Ann Rev Pathol Mechan Dis 2020; 15: 211-234.

  • 65.

    Vazin T, Freed WJ. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorat Neurol Neurosci 2010; 28: 589-603.

  • 66.

    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature 2006; 444: 481-485.

  • 67.

    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2007; 2: 1963-1972.

  • 68.

    Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y. Morula-derived human embryonic stem cells. Reprod Biomed Online 2004; 9: 623-629.

  • 69.

    Leibel SL, McVicar RN, Winquist AM, Niles WD, Snyder EY. Generation of complete multi-cell type lung organoids from human embryonic and patient-specific induced pluripotent stem cells for infectious disease modeling and therapeutics validation. Curr Protoc Stem Cell Biol 2020; 54: e118.

  • 70.

    Tan Z, Rak-Raszewska A, Skovorodkin I, Vainio SJ. Mouse embryonic stem cell-derived ureteric bud progenitors induce nephrogenesis. Cells 2020; 9.

  • 71.

    Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 2015; 6: 8715.

  • 72.

    Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, et al. Generation of functional thyroid from embryonic stem cells. Nature 2012; 491: 66-71.

  • 73.

    Noguchi TK, Kurisaki A. Formation of stomach tissue by organoid culture using mouse embryonic stem cells. Methods Mol Biol 2017; 1597: 217-228.

  • 74.

    Niapour N, Tagipour Z, Salehi H, Bagheri A, Rahani A, Talebi M, et al. Isolation and identification of mesenchymal and neural crest characteristics of dental pulp derived stem cells. Koomesh 1394; 16: 520-526. (Persian).

  • 75.

    Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. Adv Exp Med Biol 2010; 695: 155-168.

  • 76.

    Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146.

  • 77.

    Gonalves JT, Schafer ST, Gage FH. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell 2016; 167: 897-914.

  • 78.

    Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631-644.

  • 79.

    Li H, Ghazanfari R, Zacharaki D, Lim HC, Scheding S. Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann N Y Acad Sci 2016; 1370: 109-118.

  • 80.

    Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014; 14: 561-574.

  • 81.

    Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from Human adipose tissue. Methods Mol Biol 2015; 1340: 53-64.

  • 82.

    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003-1007.

  • 83.

    Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2014; 15: 19-33.

  • 84.

    Boonekamp KE, Kretzschmar K, Wiener DJ, Asra P, Derakhshan S, Puschhof J, et al. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci USA 2019; 116: 14630-14638.

  • 85.

    Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci 2018; 160: 1-22.

  • 86.

    Goodell MA, Rando TA. Stem cells and healthy aging. Science 2015; 350: 1199-1204.

  • 87.

    Grompe M. Adult versus embryonic stem cells: it's still a tie. Mol Ther 2002; 6: 303-305.

  • 88.

    Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development 2015; 142: 3113-3125.

  • 89.

    Vogt N. Human embryogenesis in a dish. Nat Methods 2020; 17: 125.

  • 90.

    Shahbazi MN. Mechanisms of human embryo development: from cell fate to tissue shape and back. Development 2020; 147.

  • 91.

    Hoang P, Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater 2021; 132: 23-36.

  • 92.

    Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-Dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell 2015; 162: 375-390.

  • 93.

    Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Gke J, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 2016; 19: 248-257.

  • 94.

    Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, Mukherjee S, et al. High-content screening in hPSC-Neural progenitors identifies drug candidates that inhibit zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 2017; 21: 274-283.e5.

  • 95.

    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016; 165: 1238-1254.

  • 96.

    Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 2017; 35: 659-666.

  • 97.

    Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 2017; 21: 383-398.e7.

  • 98.

    Bagley JA, Reumann D, Bian S, Lvi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods 2017; 14: 743-751.

  • 99.

    Cederquist GY, Asciolla JJ, Tchieu J, Walsh RM, Cornacchia D, Resh MD, et al. Specification of positional identity in forebrain organoids. Nat Biotechnol 2019; 37: 436-444.

  • 100.

    Mansour AA, Gonalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018; 36: 432-441.

  • 101.

    Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 2015; 6: 8896.

  • 102.

    Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Reports 2017; 8: 1144-1154.

  • 103.

    Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 2018; 13: 565-580.

  • 104.

    Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 2015; 10: 537-550.

  • 105.

    Muguruma K. Self-organized cerebellar tissue from human pluripotent stem cells and disease modeling with patient-derived iPSCs. Cerebellum 2018; 17: 37-41.

  • 106.

    Zimmer B, Piao J, Ramnarine K, Tomishima MJ, Tabar V, Studer L. Derivation of diverse hormone-releasing pituitary cells from human pluripotent stem cells. Stem Cell Reports 2016; 6: 858-872.

  • 107.

    Eldred KC, Hadyniak SE, Hussey KA, Brenerman B, Zhang PW, Chamling X, et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 2018; 362.

  • 108.

    Fuchs E. Scratching the surface of skin development. Nature 2007; 445: 834-842.

  • 109.

    Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 2005; 124: 867-876.

  • 110.

    Ehama R, Ishimatsu-Tsuji Y, Iriyama S, Ideta R, Soma T, Yano K, et al. Hair follicle regeneration using grafted rodent and human cells. J Invest Dermatol 2007; 127: 2106-2115.

  • 111.

    Lei M, Schumacher LJ, Lai YC, Juan WT, Yeh CY, Wu P, et al. Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells. Proc Natl Acad Sci USA 2017; 114: E7101-e7110.

  • 112.

    Lee J, Bscke R, Tang PC, Hartman BH, Heller S, Koehler KR. Hair follicle development in mouse pluripotent stem cell-derived skin organoids. Cell Rep 2018; 22: 242-254.

  • 113.

    Lee J, Koehler KR. Skin organoids: A new human model for developmental and translational research. Exp Dermatol 2021; 30: 613-620.

  • 114.

    Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, et al. Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent. Dev Cell 2019; 48: 32-48.e5.

  • 115.

    Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle stem cell niche. Exp Dermatol 2021; 30: 512-521.

  • 116.

    Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014; 16: 118-126.

  • 117.

    Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 2015; 33: 1193-1200.

  • 118.

    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526: 564-568.

  • 119.

    He J, Zhang X, Xia X, Han M, Li F, Li C, et al. Organoid technology for tissue engineering. J Mol Cell Biol 2020; 12: 569-579.

  • 120.

    Kim TH, Shivdasani RA. Stomach development, stem cells and disease. Development 2016; 143: 554-565.

  • 121.

    Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010; 6: 25-36.

  • 122.

    Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 2015; 148: 126-136.e6.

  • 123.

    McCracken KW, Cat EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014; 516: 400-104.

  • 124.

    Broda TR, McCracken KW, Wells JM. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc 2019; 14: 28-50.

  • 125.

    Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T, Liu F, et al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 2018; 362.

  • 126.

    Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37: 303-313.

  • 127.

    Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019; 565: 505-510.

  • 128.

    Chen YW, Huang SX, de Carvalho A, Ho SH, Islam MN, Volpi S, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 2017; 19: 542-549.

  • 129.

    Hu H, Gehart H, Artegiani B, Lpez-Iglesias C, Dekkers F, Basak O, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 2018; 175: 1591.

  • 130.

    Bian S, Repic M, Guo Z, Kavirayani A, Burkard T, Bagley JA, et al. Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 2018; 15: 631-639.

  • 131.

    Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med 2014; 20: 769-777.

  • 132.

    Artegiani B, van Voorthuijsen L, Lindeboom RGH, Seinstra D, Heo I, Tapia P, et al. Probing the tumor suppressor function of BAP1 in CRISPR-Engineered human liver organoids. Cell Stem Cell 2019; 24: 927-943.e6.

  • 133.

    Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018; 172: 373-386.e10.

  • 134.

    Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarr LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017; 23: 1424-1435.

  • 135.

    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014; 159: 176-187.

  • 136.

    Xie Z, Wang L, Zhang Y. Advances in organoid culture research. Glob Med Genet 2022; 9: 268-276.

  • 137.

    Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013; 499: 481-484.

  • 138.

    Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 2019; 570: 523-527.

  • 139.

    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Erratum: Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2016; 536: 238.

  • 140.

    Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A, Schweiger PJ, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 2013; 13: 734-744.

  • 141.

    Hu H, Gehart H, Artegiani B, Lpez-Iglesias C, Dekkers F, Basak O, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 2018; 175: 1591-1606.e19.

  • 142.

    Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110: 45-59.

  • 143.

    Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, et al. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials 2019; 221: 119404.

  • 144.

    Lee H, Im JS, Choi DB, Woo DH. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid 2021; 1: e11.##https://doi.org/10.51335/organoid.2021.1.e11.

  • 145.

    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014; 159: 163-175.

  • 146.

    Crowell PD, Fox JJ, Hashimoto T, Diaz JA, Navarro HI, Henry GH, et al. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep 2019; 28: 1499-1510.e6.

  • 147.

    Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019; 365: 482-487.

  • 148.

    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677-689.

  • 149.

    Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016; 34: 312-319.

  • 150.

    Pek YS, Wan AC, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 2010; 31: 385-391.

  • 151.

    Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 2017; 117: 12764-12850.