Abstract
Keywords
Brain Stem Glioma MRI Tumor Grade Classification Support Vector Machine گلیوم ساقه مغز درجه تومور ردهبندی مدل ماشین بردار پشتیبان
References
-
1.
Farwell JR, Dohrmann GJ, Flannery JT. Central nervous system tumors in children cns tumors in children. Cancer 1977; 40: 3123-3132.
-
2.
Donaldson SS, Laningham F, Fisher PG. Advances toward an understanding of brainstem gliomas. J Clin Oncol 2006; 24: 1266-1272.
-
3.
White HH. Brain stem tumors occurring in adults. Neurology 1963; 13: 292-300.
-
4.
Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 2006; 7: 241-248.
-
5.
Jallo GI, Biser-Rohrbaugh A, Freed D. Brainstem gliomas. Childs Nerv Syst 2004; 20: 143-153.
-
6.
Guillamo JS, Monjour A, Taillandier L, Devaux B, Varlet P, Haie-Meder C, et al. Brainstem gliomas in adults: prognostic factors and classification. Brain 2001; 124: 2528-2539.
-
7.
States CBTRotU. Statistical report: primary brain tumors in the United States, 19982002. Hinsdale (Illinois): Central Brain Tumor Registry of the United States 2002.
-
8.
Fountas KN, Kapsalaki EZ, Gotsis SD, Kapsalakis JZ, Smisson Iii HF, Johnston KW, et al. In vivo proton magnetic resonance spectroscopy of brain tumors. Stereotact Funct Neurosurg 2000; 74: 83-94.
-
9.
Furuya S, Naruse S, Ide M, Morishita H, Kizu O, Ueda S, Maeda T. Evaluation of metabolic heterogeneity in brain tumors using 1Hchemical shift imaging method. NMR Biomed 1997; 10: 25-30.
-
10.
Hagberg G. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 1998; 11: 148-156.
-
11.
McKnight TR, Noworolski SM, Vigneron DB, rer Nat ND, Sarah J. An automated technique for the quantitative assessment of 3DMRSI data from patients with glioma. J Magn Reson Imaging 2001; 13: 167-177.
-
12.
Tate AR, Majs C, Moreno A, Howe FA, Griffiths JR, Ars C. Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 2003; 49: 29-36.
-
13.
Nishihara M, Sasayama T, Kudo H, Kohmura E. Morbidity of stereotactic biopsy for intracranial lesions. Kobe J Med Sci 2011; 56: E148-153.
-
14.
Parida S, Dehuri S. Review of fMRI Data Analysis: A Special Focus on Classification. Int J E-Health Med Commun 2014; 5: 1-26.
-
15.
Sanie Abadeh M, Mahmoodi S, Taherparvar M. Practical Data Mining. 2th ed. Tehran: Niaze Danesh; 2014.
-
16.
Montazeri MA, Mahdieh. Machine learning models for predicting the diagnosis of liver disease. Koomesh 2014; 16: 53-59.
-
17.
Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009; 62: 1609-1618.
-
18.
Mahshid N. Development of fuzzy regression models with categorical response data and it's application in medical studies [PhD dissertation]. School of Allied Medical Sciences. Shahid Beheshti Univ Med Sci 2013. (Persian).
-
19.
Farhad N. Assessment of Correlation between MRI findings of Brain stem Glioma and its histopathological grade [PhD dissertation]. School of Medicine. Shahid Beheshti Univ Med Sci 2012. (Persian).
-
20.
Chen K, Wang L. Trends in neural computation: Springer; 2006.
-
21.
Nitta T, Sato K. [A clinicopathological study of nine cases of midbrain glioma]. No Shinkei Geka 1995; 23: 405-410.##.