In vitro anti-bacterial effect of nano-polyamidoamine-G5 dendrimer

authors:

avatar Soudabeh Alizadeh Matboo , avatar Shahram Nazari , * , avatar Leila Mohammadi , avatar Susan Bagheri , avatar Fakhraddin Akbari Dourbash , avatar Ahmadreza Yari , avatar Seyyed Ahmad Mokhtari , avatar A. li Niapour , avatar Seyyed Mohsen Mohseni


how to cite: Alizadeh Matboo S, Nazari S, Mohammadi L, Bagheri S, Akbari Dourbash F, et al. In vitro anti-bacterial effect of nano-polyamidoamine-G5 dendrimer. koomesh. 2019;21(1):e153054. 

Abstract

Introduction: Progress in nanotechnology in the past decayed has created various opportunities for evaluation of biological effects such as anti-bacterial effects of nanoparticles.  This study was aimed to examine synthesis and the antibacterial effect of Nano-Polyamidoamine-G5 (NPAMAM-G5) dendrimer on Klebsiella Pneumoniae, Pseudomonas Aeruginosa, Shigella Dysenteriae and Bacillus Subtilis. Materials and Methods:  NPAMAM-G5 dendrimers was synthesized by Tomalia’s divergent growth approach. The antibacterial effects of NPAMAM-G5 dendrimer were studied by disc diffusion and micro-dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria were determined according to Clinical and Laboratory Standards Institute (CLSI) guideline. Transmission electron microscopy (TEM) was used to analyze morphology and size of NPAMAM-G5. Results: Zone of inhibition in concentration 25μg/ml of NPAMAM-G5 dendrimers for Klebsiella Pneumoniae, Pseudomonas Aeruginosa, Shigella Dysenteriae and Bacillus Subtilis were 27, 13, 30 and 18 mm, respectively. There was a significant difference regarding the zone of inhibition between gram-negative and gram-positive bacteria (p

References

  • 1.

    Toulabi T, Janani F, Qurbanmohammadi E. The appropriateness of educational programs' objectives for professional needs: the viewpoints of Khorramabad school of nursing and midwifery graduates. Iran J Med Educ 2009; 8: 263-273.

  • 2.

    Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol2002; 23: 183-189.

  • 3.

    Kampf G, Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev 2004; 17: 863-893.

  • 4.

    Saint S, Kowalski CP, Kaufman SR, Hofer TP, Kauffman CA, Olmsted RN, Forman J, Banaszak-Holl J, Damschroder L, Krein SL. Preventing hospital-acquired urinary tract infection in the United States: a national study. Clin Infect Dis 2008; 46: 243-250.

  • 5.

    Krein SL, Kowalski CP, Hofer TP, Saint S. Preventing hospital-acquired infections: a national survey of practices reported by U.S. hospitals in 2005 and 2009. J Gen Intern Med 2012; 27: 773-779.

  • 6.

    Al-Ghamdi S, Gedebou M, Bilal N. Nosocomial infections and misuse of antibiotics in a provincial community hospital, Saudi Arabia. J Hosp Infect 2002; 50: 115-121.

  • 7.

    Craven DE, Kunches LM, Kilinsky V, Lichtenberg DA, Make BJ, McCabe WR. Risk factors for pneumonia and fatality in patients receiving continuous mechanical ventilation.Am Rev Respir Dis 1986; 133: 792-796.

  • 8.

    Cappuccino JG, Sherman N. Microbiology: a laboratory manual: Pearson/Benjamin Cummings; 2008; p: 86.

  • 9.

    Burke JP. Infection control-a problem for patient safety.N Engl J Med 2003; 348: 651-656.

  • 10.

    Meshkibaf MH, Abdollahi A, Fasihi Ramandi M, Adnani Sadati SJ, Moravvej A, Hatami S. Antibacterial effects of hydro-alcoholic extracts of Ziziphora tenuior, Teucrium polium, Barberis corcorde and Stachys inflate. Koomesh 2010; 11: 240-244. (Persian).

  • 11.

    Abdal N, Hamidi A, Hosseini D. Prevalence of genes encoding aminoglycoside resistant in methicillin-sensitive Staphylococcus aurous and coagulase-negative staphylococci isolated from hospital infectious. Koomesh 2014; 16: 82-89. (Persian).

  • 12.

    Zamanzad B, kherad var D. The sensitivity pattern of bacteria extracted from medical instruments of different wards of Kashani hospital to routine antibacterial agents, Shahrekord, 1996. J Shahrekord Univ Med Sci 2002; 3: 25-30. (Persian).

  • 13.

    Ranjbar R, Sarshar M. Genetic diversity of clinical strains of Salmonella enterica serovar Typhimurium. J Mil Med 2012; 14: 143-147.

  • 14.

    Rajaie S, Mohammadi Sichani M, Yousefi MH. Study on the inhibitory activity of zinc oxide nanoparticles against Pseudomonas aeruginosa isolated from burn wounds. Qom Univ Med Sci J 2015; 9: 30-37. (Persian).

  • 15.

    Hoseinzadeh E, Samarghandi MR, Alikhani MY, Asgari Gh, Roshanaei Gh. Effect of Zink Oxide (ZnO) nanopartiecles on death kinetic of gram-negative and positive bacterium. J Babol Univ Med Sci 2012; 14: 13-19 (Persian).

  • 16.

    Halfmann H, Bibinov N, Wunderlich J, Awakowicz P. A double inductively coupled plasma for sterilization of medical devices. J Phys Appl Phys 2007; 40: 4145.

  • 17.

    Roshaliza H, Liu C, Joanna O. Can the use of 70% isopropyl alcohol swab or aspiration using 5 microm Filter Straw reduce bacterial contamination of fentanyl solution used for regional anaesthesia? Med J Malaysia2011; 66: 92-94.

  • 18.

    Jokar A, Mohebi Z, Garmaznejad S, Sharifi M. A comparison of efficacy of isopropyl alcohol and ethanol in disinfection programs in pediatrics ward and neonatal intensive care unit. Hayat 2009; 15: 52-58. (Persian).

  • 19.

    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 2008; 42: 4591-602.

  • 20.

    Eskandarlou A, Yousefi MR. The evaluation of bacterial contamination of active radiography apparatus in dental centers of Hamadan city. J Hamadan Univ Med Sci 2006; 12: 55-59 (Persian).

  • 21.

    Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili M. A Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 2011; 162: 542-549.

  • 22.

    Yari AR, Nazari Sh, Rastegar A, Alizadeh Matboo S, Majidi Gh, Tanhaye Reshvanloo M. Removal of acid red 18 dye from aqueous solutions using nanoscale Zero-Valent Iron. Iran J Health Sci 2015; 3: 63-69.

  • 23.

    Gholami M, Nazari Sh, Yari AR, Mohseni SM, Matboo SA. Removal of E. coli and S. aureus from polluted water using electrolysis method with Al-Fe electrodes. Tehran Univ Med J 2017; 75: 85-95.

  • 24.

    Izanloo HN, Ahmadi Jebelli M, Alizadeh Matboo S, Hamid Reza Tashauoei, Vakili B, etal. Studying the polypropylenimine-G2 (PPI-G2) dendrimer performance in removal of escherichia coli, proteus mirabilis, bacillus subtilis and staphylococcus aureus from aqueous solution. Arak Med Univ J 2015; 18: 8-16. (Persian).

  • 25.

    Izanloo H, Jebelli MA, Mjidi G, Khazaei M, Tashayoe HR, Vazirirad V, et al. The antibacterial effect of polypropylenimine-G2 dendrimer on escherichia coli, enterobacter cloacae, bacillus subtilis, and staphylococcus aureus. Qom Univ Med Sci J 2014; 8: 34-43 (Persian).

  • 26.

    Dourbash FA, Alizadeh P, Nazari S, Farasat A. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration. Mater Sci Eng C Mater Biol Appl2017; 78: 1135-1146.

  • 27.

    Charles S, Vasanthan N, Kwon D, Sekosan G, Ghosh S. Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett2012; 53: 6670-6675.

  • 28.

    Abkenar SS, Malek RM, Mazaheri F. Salt-free dyeing isotherms of cotton fabric grafted with PPI dendrimers. Cellulose 2015; 22: 897-910.

  • 29.

    Gholami M, Nazari S, Farzadkia M, Mohseni SM, Alizadeh Matboo S, Akbari Dourbash F, Hasannejad M. Nano polyamidoamine-G7 dendrimer synthesis and assessment the antibacterial effect in vitro. Tehran Univ Med J 2016; 74: 25-35. (Persian).

  • 30.

    Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002; 23: 3359-3368.

  • 31.

    Strydom SJ, Rose WE, Otto DP, Liebenberg W, de Villiers MM. Poly (amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine 2013; 9: 85-93.

  • 32.

    Felczak A, Wroska N, Janaszewska A, Klajnert B, Bryszewska M, Appelhans D, et al. Antimicrobial activity of poly (propylene imine) dendrimers. New J Chem 2012; 36: 2215-2222.

  • 33.

    Izanloo H, Ahmadi Jebelli M, Nazari Sh, Safavi N, Tashauoei HR, et al. Studying the antibacterial effect of Polyamidoamine-G4 Dendrimer on some of the gram-negative and gram-positive bacteria. Arak Med Univ J 2014; 17: 1-10 (Persian).

  • 34.

    Gholami M, Mohammadi R, Arzanlou M, Dourbash FA, Kouhsari E, Majidi G, et al. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer.BMC Infect Dis2017; 17: 395.

  • 35.

    Rastegar A, Nazari S, Allahabadi A, Falanji F, Akbari Dourbash F, Rezai Z, et al. Antibacterial activity of amino-and amido-terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains. Med J Islam Repub Iran 2017; 31: 368-376.

  • 36.

    Gholami M, Nazari S, Farzadkia M, Majidi G, Alizadeh Matboo S. Assessment of nanopolyamidoamine-G7 dendrimer antibacterial effect in aqueous solution. Tehran Univ Med J 2016; 74: 159-167.

  • 37.

    Xue X, Chen X, Mao X, Hou Z, Zhou Y, Bai H, et al. Amino-terminated generation 2 poly (amidoamine) dendrimer as a potential broad-spectrum, nonresistance-inducing antibacterial agent. AAPS J 2013; 15: 132-142.

  • 38.

    Jain A, Singh K. Recent advances in the management of nosocomial infections. JK Sci 2007; 9: 3-8.

  • 39.

    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986; 19: 2466-2468.

  • 40.

    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk diffusion susceptibility tests. 19th ed. Wayne, PA: Clinical and Laboratory Standards. Curr Microbiol 2015;70: 907-909.

  • 41.

    Zapata A, Ramirez-Arcos S. A comparative study of mcFarland turbidity standards and the densimat photometer to determine bacterial cell density.Curr Microbiol2015; 70: 907-909.

  • 42.

    Divsar F, Ju H. Electrochemiluminescence detection of near single DNA molecules by using quantum dotsdendrimer nanocomposites for signal amplification. Chem Commun 2011; 47: 9879-9881.

  • 43.

    Priyam A, Blumling DE, Knappenberger Jr KL. Synthesis, characterization, and self-organization of dendrimer-encapsulated HgTe quantum dots. Langmuir 2010; 26: 10636-10644.

  • 44.

    Izanloo HT, Khazae M, Nazari Sh, Mjidi Gh, Vaziri Rad V, et al. The antimicrobial effects of polypropylenimine-G2 and polyamidoamine-G4 dendrimers on klebsiella oxytoca, pseudomonas aeruginosa and proteus mirabilis, in vitro experiment. J Sabzevar Univ Med Sci 2014; 21: 925-933. (Persian).

  • 45.

    Ravikumar S, Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens. Int J Pharm Sci Drug Res 2012; 4: 157-159.

  • 46.

    Hermanson GT. Bioconjugate techniques: Third ed: Elsevier; 2013;p: 351-386.

  • 47.

    Salimi H, Owlia P, Yakhchali B, Lari AR. Characterization of pseudomonas aeruginosa in burn patients using PCR-restriction frag-ment length polymorphism and random amplified polymorphic DNA analysis. Iran J Med Sci 2015; 35: 236-241. (Persian).

  • 48.

    Clancy J, Dupont L, Konstan M, Billings J, Fustik S, Goss C, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 2013; 68: 818-825.

  • 49.

    MR BN, Hajia M. Multidrug-resistant pseudomonas aeruginosa strains in Tehran reference burn hospital, Tehran, Iran. African J Microbiol Res 2012; 6: 1393-1396.

  • 50.

    Shahcheraghi F, Feizabadi M, Yamin V, Abiri R, Abedian Z. Serovar determination, drug resistance patterns and plasmid profiles of Pseudomonas aeruginosa isolated from burn patients at two hospitals of Tehran (IRAN). Burns 2003; 29: 547-551.

  • 51.

    Mihani FK. MBL-producing pseudomonas aeruginosa strains isolated from patients with burn wound infections and PCR methods to identify blaVIM, blaIMP genes. Iran J Microbiol 2007; 1: 23-31. (Persian).

  • 52.

    Shakibaie M, Shahcheraghi F, Hashemi A, Saeed Adeli N. Detection of TEM, SHV and PER Type extended-spectrum -lactamas gene among clinical strains of pseudomonas aeruginosa isolated from burnt patients at Shafa haspital. Iran J Basic Med Sci 2008; 11: 104-111.

  • 53.

    Jafari A, Ghane M, Arastoo S. Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. African J Microbiol Res 2011; 5: 5465-5473.

  • 54.

    Chung YC, Su YP, Chen CC, Jia G, Wang Hl, Wu JG, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall.Acta Pharmacol Sin2004; 25: 932-936.

  • 55.

    Esmaielzadeh H, Sangpour P, Khaksar R, Shahraz F. The effect of ZnO nanoparticles on the growth of bacillus subtilis and escherichia coli O157:H7. Food Technol Nutr 2014; 11: 21-28 (Persian).

  • 56.

    Hoseinzadeh E, Alikhani MY, Samarghandi MR, Shirzad-Siboni M. Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria. Desal Water Treat 2014; 52: 4969-4976.

  • 57.

    Brooks GF, Butel JS, Morse SA. Medical microbiology. United States 25th 1998; p: 73.

  • 58.

    Janiszewska J, Swieton J, Lipkowski AW, Urbanczyk-Lipkowska Z. Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorg Med Chem Lett2003; 13: 3711-3713.

  • 59.

    Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 2006; 40: 3527-3532.##.