Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer

authors:

avatar Bahman Yousefi , avatar Majid Eslami ORCID , * , avatar parviz Kokhaei , avatar Saeid ValiZadeh , avatar Abdolmajid Ghasemian


How To Cite Yousefi B, Eslami M, Kokhaei P, ValiZadeh S, Ghasemian A. Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer. koomesh. 2019;21(2):e153059. 

Abstract

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host cell defense, survival, differentiation and development. It can have a tumor suppressor activity or cancer progression and plays an important role in host safety and homeostatic. H. pylori can affect host pathogenic pathway through VacA and CagA virulence factors and carcinogenesis. Increasing autophagy in tumor cells prevents the accumulation of non-functional mitochondria that can disrupt tumorigenicity. The ability of H. pylori to manipulate host pathogenesis pathway is considered as one of the important aspects of its pathogenesis. Several studies have shown that infection with H. pylori causes autophagy in both gastric epithelial cells and phagocytes. In the epithelial cells of the stomach, VacA is a necessary factor in autophagy. While CagA is a negative regulator of the phenomenon, the elimination of this gene from H. pylori has increased autophagy and the production of inflammatory cytokines is reduced.

References

  • 1.

    Steensma DP, Kyle RA, Shampo MA, Robin Warren J. Helicobacter pylori and peptic ulcer. Mayo Clin Proc 2016; 91: e129-130.

  • 2.

    Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2014; 2: 103.

  • 3.

    M Brown L. Helicobacter Pylori: Epidemiology and Routes of Transmission; 2000; 22: 283-297.

  • 4.

    Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol 2009; 472: 467-477.

  • 5.

    EL H, ZR M, Franco B. Epidemiology of helicobacter pylori Infection. Helicobacter 2014; 19: 1-5.

  • 6.

    Vale FF, Vitor JM. Transmission pathway of Helicobacter pylori: does food play a role in rural and urban areas? Int J Food Microbiol 2010; 138: 1-12.

  • 7.

    Salama NR, Hartung ML, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 2013; 11: 385-399.

  • 8.

    Xiang Z, Censini S, Bayeli PF, Telford JL, Figura N, Rappuoli R, Covacci A. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun 1995; 63: 94-98.

  • 9.

    Portal-Celhay C, Perez-Perez GI. Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clin Sci 2006; 110: 305-314.

  • 10.

    Chu YT, Wang YH, Wu JJ, Lei HY. Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun 2010; 78: 4157-4165.

  • 11.

    Wang YH, Wu JJ, Lei HY. The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood) 2009; 23: 178-180.

  • 12.

    Sepulveda AR. Helicobacter, inflammation, and gastric cancer. Curr Pathobiol Rep 2013; 1: 9-18.

  • 13.

    Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest 2007; 117: 60-69.

  • 14.

    Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, et al. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy 2012; 8: 1045-1057.

  • 15.

    Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 2011; 80: 125-156.

  • 16.

    Choi KS. Autophagy and cancer. Exp Mol Med 2012; 44: 109-120.

  • 17.

    Greenfield LK, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trend Microbiol 2013; 21: 602-612.

  • 18.

    Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 2012; 12: 764-777.

  • 19.

    Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis 2016; 39: 14-23.

  • 20.

    Morris DH, Yip CK, Shi Y, Chait BT, Wang QJ. Beclin 1-VPS34 complex architecture: understanding the nuts and bolts of therapeutic targets. Front Biol (Beijing) 2015; 10: 398-426.

  • 21.

    Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 2013; 6: 25-39.

  • 22.

    Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005; 12: 1542-1552.

  • 23.

    Zens B, Sawa-Makarska J, Martens S. In vitro systems for Atg8 lipidation. Methods 2015; 75: 37-43.

  • 24.

    Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. Autophagy in helicobacter pylori infection and related gastric cancer. Helicobacter 2015; 20: 353-369.

  • 25.

    Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem 2018; 293: 5414-5424.

  • 26.

    Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 1988; 263: 6797-6805.

  • 27.

    Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012; 69: 1125-1136.

  • 28.

    White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12: 401-410.

  • 29.

    Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062-1075.

  • 30.

    Sun Y, Peng ZL. Autophagy, Beclin 1, and Their Relation to Oncogenesis 2008; 39: 287-90.

  • 31.

    Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51-64.

  • 32.

    Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25: 460-470.

  • 33.

    Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011; 22: 165-178.

  • 34.

    Zhou S, Zhao L, Kuang M, Zhang B, Liang Z, Yi T, et al. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett 2012; 323: 115-127.

  • 35.

    Choi KS. Autophagy and cancer. Exp Mol Med 2012; 44: 109-120.

  • 36.

    Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11: 709-730.

  • 37.

    Li Y, Zhang J, Ma H, Chen X, Liu T, Jiao Z, et al. Protective role of autophagy in matrineinduced gastric cancer cell death. Int J Oncol 2013; 42: 1417-1426.

  • 38.

    Tu SP, Quante M, Bhagat G, Takaishi S, Cui G, Yang XD, et al. Interferon- inhibits gastric carcinogenesis by inducing epithelial cell autophagy and T cell apoptosis. Cancer Res 2011; 71: 4247-4259.

  • 39.

    Kuo SH, Chen LT, Lin CW, Yeh KH, Shun CT, Tzeng YS, et al. Expressions of the CagA protein and CagA-signaling molecules predict < em> Helicobacter pylori dependence of early-stage gastric DLBCL. Blood 2017; 129: 188.

  • 40.

    Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 2005; 96: 835-843.

  • 41.

    Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I, et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 2005; 280: 23130-23137.

  • 42.

    Vaziri F, Peerayeh SN, Alebouyeh M, Maghsoudi N, Azimzadeh P, Siadat SD, Zali MR. Novel effects of Helicobacter pylori CagA on key genes of gastric cancer signal transduction: a comparative transfection study. Pathog Dis 2015; 73.

  • 43.

    Fazeli Z, Alebouyeh M, Rezaei Tavirani M, Azimirad M, Yadegar A. Helicobacter pylori CagA induced interleukin-8 secretion in gastric epithelial cells. Gastroenterol Hepatol Bed Bench 2016; 9: S42-S46.

  • 44.

    Peters T, Owen R, Slater E, Varea R, Teare E, Saverymuttu S. Genetic diversity in the Helicobacter pylori cag pathogenicity island and effect on expression of anti-CagA serum antibody in UK patients with dyspepsia. J Clin Pathol 2001; 54: 219-223.

  • 45.

    Lee KE, Khoi PN, Xia Y, Park JS, Joo YE, Kim KK, et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol 2013; 19: 8192-8202.

  • 46.

    Li N, Tang B, Jia Yp, Zhu P, Zhuang Y, Fang Y, et al. Helicobacter pylori CagA Protein Negatively Regulates Autophagy and Promotes Inflammatory Response via c-Met-PI3K/Akt-mTOR Signaling Pathway. Front Cell Infect Microbiol 2017; 7: 417.

  • 47.

    Li N, Tang B, Jia YP, Zhu P, Zhuang Y, Fang Y, et al. Helicobacter pylori CagA protein negatively regulates autophagy and promotes inflammatory response via c-Met-PI3K/Akt-mTOR signaling pathway. Front Cell Infect Microbiol 2017; 7: 417.

  • 48.

    Gunn MC, Stephens JC, Stewart JA, Rathbone BJ, West KP. The significance of cagA and vacA subtypes of Helicobacter pylori in the pathogenesis of inflammation and peptic ulceration. J Clin Pathol 1998; 51: 761-764.

  • 49.

    Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2012; 2: 92.

  • 50.

    Borlace GN, Jones HF, Keep SJ, Butler RN, Brooks DA. Helicobacter pylori phagosome maturation in primary human macrophages. Gut Pathogens 2011; 3: 3-6.

  • 51.

    Zhu P, Xue J, Zhang ZJ, Jia YP, Tong YN, Han D, et al. Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Disease 2017; 8: 3207.

  • 52.

    Zhang K, Kaufman RJ. Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo. Methods Enzymol 2008; 442: 395-419.

  • 53.

    Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, et al. Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 2009; 5: 370-379.