Challenges for treatment of cardiovascular diseases based on stem cells

authors:

avatar saeid shahrabi , avatar Somayeh Mansournezhad , avatar Shirin Azizidoost , avatar Fatemeh Jorfi , avatar Najmaldin Saki , *


How To Cite shahrabi S, Mansournezhad S, Azizidoost S, Jorfi F, Saki N. Challenges for treatment of cardiovascular diseases based on stem cells. koomesh. 2019;21(3):e153085. 

Abstract

Introduction: Cardiovascular diseases (CVD) are the primary cause of death worldwide, and the development of scar tissue in myocardium and also the irreversible destruction of cardiomyocytes are the main factors in their development. There are still limitations in medical treatment of CVD, despite the advances in the field of drug therapy and surgery for CVD. In recent years, research on stem cells has led to potential application of them in in various clinical and pre-clinical trials to treat various cardiovascular diseases given the unique features of stem cells. However, the results of clinical trials have been inconsistent on human samples and have had limited therapeutic effects. To overcome these limitations, the exact diagnosis of disease, identification of stem cells, their method of injection and mechanism of action, as well as patient;#39s individual profile are necessary to predict the response to stem cell therapy, provide the highest quality of treatment and reduce the side effects. In the present study, we have introduced different types of stem cells, their injection methods and mechanisms of action for cell therapy in CVD as well as the challenges posed in this field. Also, solutions for genetic and non-genetic manipulations are suggested to increase the survival and efficiency of stem cells. For this purpose, the articles published between 1992 and 2018 were studied using the following keywords: "stem cell", "cell therapy", "injection", "tissue engineering" and " Gene therapy".  

References

  • 1.

    Sun R, Li X, Liu MIN, Zeng YI, Chen S, Zhang P. Advances in stem cell therapy for cardiovascular disease (Review). Int J Mol Med 2016; 38: 23-29.

  • 2.

    Sheng CC, Zhou L, Hao J. Current Stem cell delivery methods for myocardial repair. Bio Med Res Int 2013; 2013: 15.

  • 3.

    Russo MJ, Iribarne A, Easterwood R, Ibrahimiye AN, Davies R, Hong KN, et al. Postheart transplant survival is inferior at low-volume centers across all risk strata. Circulation 2010; 122: S85-S91.

  • 4.

    Murry CE, Field LJ, Menasch P. Cell-based cardiac repair: reflections at the 10-year point. Circulation 2005; 112: 3174-3183.

  • 5.

    Saki N, Jalalifar MA, Soleimani M, Hajizamani S, Rahim F. Adverse effect of high glucose concentration on stem cell therapy. Int J Hematol Oncol Stem Cell Res 2013; 7: 34.

  • 6.

    Penn MS, Mal N. Stem cells in cardiovascular disease. cardiovascular disease. Springer 2006; p: 329-351.

  • 7.

    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701.

  • 8.

    Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev 2013; 93: 23-67.

  • 9.

    Ilic D, Polak JM. Stem cells in regenerative medicine: introduction. Br Med Bull 2011; 98: 117-126.

  • 10.

    Bernal A, Glvez BG. The potential of stem cells in the treatment of cardiovascular diseases. Stem Cell Rev 2013; 9: 814-832.

  • 11.

    Barzilay R, Levy YS, Melamed E, Offen D. Adult stem cells for neuronal repair. Isr Med Assoc J 2006; 8: 61-66.

  • 12.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.

  • 13.

    Li J, Wang T, Zhang X, Yang X. The contribution of next generation sequencing technologies to epigenome research of stem cell and tumorigenesis. Human Genet Embryol 2011; 2: 001.

  • 14.

    Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circulation Res 2013; 112: 562-574.

  • 15.

    Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cell Dev 2011; 21: 977-986.

  • 16.

    Ahmed RP, Ashraf M, Buccini S, Shujia J, Haider HK. Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen Med 2011; 6: 171-178.

  • 17.

    Lin Q, Fu Q, Zhang Y, Wang H, Liu Z, Zhou J, et al. Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 2010; 12: 1179-1185.

  • 18.

    Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 2009; 5: 364-377.

  • 19.

    Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006; 47: 1777-1785.

  • 20.

    Wollert KC. Cell therapy for acute myocardial infarction. Curr Opin Pharmacol 2008; 8: 202-210.

  • 21.

    Asahara T, Kalka C, Isner J. Stem cell therapy and gene transfer for regeneration. Gene Ther 2000; 7: 451.

  • 22.

    Soleimani M, Aghayan HR, Goodarzi P, Hagh MF, Lajimi AA, Saki N, et al. Stem Cell TherapyApproach for Multiple Sclerosis Treatment. Arch Neurosci 2016; 3: 1-9. (Persian).

  • 23.

    Mansour S, Roy DC, Bouchard V, Nguyen BK, Stevens LM, Gobeil F, et al. COMPARE-AMI trial: comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular dysfunction: study rationale and design. J Cardiovasc Transl Res 2010; 3: 153-159.

  • 24.

    Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428: 668.

  • 25.

    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664.

  • 26.

    Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011; 95: 213-228.

  • 27.

    Gruh I, Beilner J, Blomer U, Schmiedl A, Schmidt-Richter I, Kruse M-L, et al. No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 2006; 113: 1326-1334.

  • 28.

    Wei X, Yang X, Han Zp, Qu Ff, Shao L, Shi Yf. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013; 34: 747.

  • 29.

    Dehghanifard A, Shahjahani M, Soleimani M, Saki N. The emerging role of mesenchymal stem cells in tissue engineering. Int J Hematol Oncol Stem Cell Res 2013; 7: 46-47.

  • 30.

    Locke M, Windsor J, Dunbar P. Human adiposederived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 2009; 79: 235-244.

  • 31.

    Rahim F, Saki N, Mousavi SH, Soleimani M, Khamisipour G. A review of biology and clinical use of mesenchymal stem cell: an immune-modulator progenitor cell. Apadana J Clin Res 2012; 1: 3-16. (Persian).

  • 32.

    Zhang Y, Zhang Z, Gao F, Tse HF, Tergaonkar V, Lian Q. Paracrine regulation in mesenchymal stem cells: the role of Rap1. Nat Publ Group 2015.

  • 33.

    Dehghani Fard A, Saki N, Ahmadvand M, Mahmoodinia Maymand M, Mosahebi Mohammadi M, Soleimani M. Mesenchymal stem cell; biology, application and its role in regenerative medicine. Sci J Iran Blood Transfus Organ 2012; 8: 306-320. (Persian).

  • 34.

    Rastegar F, Shenaq D, Huang J, Zhang W, Zhang BQ, He BC, et al. Mesenchymal stem cells: Molecular characteristics and clinical applications. World J Stem Cell 2010; 2: 67.

  • 35.

    Chen Sl, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94: 92-95.

  • 36.

    Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 2007; 21: 3197-3207.

  • 37.

    Nakanishi C, Yamagishi M, Yamahara K, Hagino I, Mori H, Sawa Y, et al. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 2008; 374: 11-16.

  • 38.

    Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 2010; 89: 650-660.

  • 39.

    Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, et al. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3 signaling. Biochem Biophys Res Commun 2007; 352: 635-641.

  • 40.

    Chong JJ, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE. Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 2013; 22: 1932-1943.

  • 41.

    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763-776.

  • 42.

    Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 2012; 126: S54-S64.

  • 43.

    Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 2012; 379: 895-904.

  • 44.

    Wang CH, Cherng WJ, Verma S. Drawbacks to stem cell therapy in cardiovascular diseases. Future Cardiol 2008; 4: 399-408.

  • 45.

    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147.

  • 46.

    Heidari Keshel S, Rezaei Tavirani M, Ebrahimi M, solimani M, Roozafzoon R, kaviani S, et al. Ability of conservation embryonic stem cells, umbilical cord blood mesenchymal stem cells as a feeder layer. Scie J Ilam Univ Med Sci 2013; 20: 243-252. (Persian).

  • 47.

    Seifinejad A, Tabebordbar M, Baharvand H, Boyer LA, Salekdeh GH. Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev 2010; 6: 297-306.

  • 48.

    Faiella W, Atoui R. Therapeutic use of stem cells for cardiovascular disease. Clin Translat Med 2016; 5: 34.

  • 49.

    Sun Q, Zhang Z, Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis 2014; 1: 113-119.

  • 50.

    Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014; 16: 323.

  • 51.

    Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012; 10: 244-258.

  • 52.

    Solali S, Kaviani S, Soleimani M, Zonoubi Z. Isolation and characterization of mesenchymal stem cells derived from adipose tissue. Koomesh 2015; 16: 505-511. (Persian).

  • 53.

    MacCalman CD, Bardeesy N, Holland PC, Blaschuk OW. Noncoordinate developmental regulation of Ncadherin, NCAM, integrin, and fibronectin mRNA levels during myoblast terminal differentiation. Dev Dyn 1992; 195: 127-132.

  • 54.

    Bui QT, Gertz ZM, Wilensky RL. Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res Ther 2010; 1: 29.

  • 55.

    Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy. Vasc Health Risk Manag 2012; 8: 99-113.

  • 56.

    Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12-20.

  • 57.

    Strauer B, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg R, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 2001; 126: 932-938.

  • 58.

    Wojakowski W, Tendera M, Cybulski W, Zuba-Surma EK, Szade K, Florczyk U, et al. Effects of intracoronary delivery of allogenic bone marrow-derived stem cells expressing heme oxygenase-1 on myocardial reperfusion injury. Thromb Haemost 2012; 107: 464-475.

  • 59.

    Thompson CA, Nasseri BA, Makower J, Houser S, McGarry M, Lamson T, et al. Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 2003; 41: 1964-1971.

  • 60.

    Klemm HU, Franzen O, Ventura R, Willems S. Catheter based simultaneous mapping of cardiac activation and motion: a review. Indian Pacing Electrophysiol J 2007; 7: 148-159.

  • 61.

    Hare JM, Fishman JE, Gerstenblith G, Velazquez DLD, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrowderived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308: 2369-2379.

  • 62.

    Perin EC, Lpez J. Methods of stem cell delivery in cardiac diseases. Nat Rev Cardiol 2006; 3: S110.

  • 63.

    Smits P, Reijs A, van der Giessen W, editors. Efficiency and retention of a percutaneous transendomyocardial injection of VEGF165 by a fluoroscopy guided transendomyocardial injection catheter. XIVth World Congress of Cardiology, Sydney, Australia; 2002.

  • 64.

    Wu K, Mo X, Lu S, Han Z. Retrograde delivery of stem cells: promising delivery strategy for myocardial regenerative therapy. Clin Transplant 2011; 25: 830-833.

  • 65.

    Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, et al. Monocyte chemotactic protein3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 2007; 25: 245-251.

  • 66.

    Wollert KC, Meyer GP, Lotz J, Lichtenberg SR, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141-148.

  • 67.

    Amado LC, Saliaris AP, Schuleri KH, John MS, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 2005; 102: 11474-11479.

  • 68.

    Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeniczak J, Rozwadowska N, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 2004; 148: 531-537.

  • 69.

    Laham RJ, Post M, Rezaee M, Donnell-Fink L, Wykrzykowska JJ, Lee SU, et al. Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab Dispos 2005; 33: 1101-1107.

  • 70.

    Herreros J, Prsper F, Perez A, Gavira JJ, Garcia-Velloso MJ, Barba J, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003; 24: 2012-2020.

  • 71.

    Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005; 112: 1748-1755.

  • 72.

    Smits PC, van Geuns R-JM, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 2003; 42: 2063-2069.

  • 73.

    Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Res 2013; 113: 810-834.

  • 74.

    Limbourg FP, RingesLichtenberg S, Schaefer A, Jacoby C, Mehraein Y, Jger MD, et al. Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment. Eur J Heart Fail 2005; 7: 722-729.

  • 75.

    Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005; 85: 1373-1416.

  • 76.

    Humar R, Kiefer F, Battegay E. Formation of new blood vessels in the heart can be studied in cell cultures. ALTEX 2007; 24: 35-38.

  • 77.

    Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circulation Res 2005; 96: 127-137.

  • 78.

    Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Res 2008; 103: 1204-1219.

  • 79.

    Kinnaird T, Stabile E, Burnett M, Lee C, Barr S, Fuchs S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Res 2004; 94: 678-685.

  • 80.

    Martini E, Stirparo GG, Kallikourdis M. Immunotherapy for cardiovascular disease. J Leukoc Biol 2018; 103: 493-500.

  • 81.

    Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74: 2345-2360.

  • 82.

    Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13: 392-402.

  • 83.

    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-3843.

  • 84.

    Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circulation Res 2015; 116: 354-367.

  • 85.

    Ylstalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are selfactivated to produce prostaglandin E2 that directs stimulated macrophages into an antiinflammatory phenotype. Stem Cells 2012; 30: 2283-2296.

  • 86.

    Mller P, Lemcke H, David R. Stem cell therapy in heart diseasescell types, mechanisms and improvement strategies. Cell Physiol Biochem 2018; 48: 2607-2655.

  • 87.

    Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100: II-247-Ii-256.

  • 88.

    Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005; 111: 150-156.

  • 89.

    Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 2007; 28: 2667-2677.

  • 90.

    Wang J, Zhang S, Rabinovich B, Bidaut L, Soghomonyan S, Alauddin MM, et al. Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circulation Res 2010; 106: 1904-1911.

  • 91.

    Tillmanns J, Rota M, Hosoda T, Misao Y, Esposito G, Gonzalez A, et al. Formation of large coronary arteries by cardiac progenitor cells. Proc Natl Acad Sci U S A 2008; 105: 1668-1673.

  • 92.

    Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Res 2008; 103: 107-116.

  • 93.

    Mathieu M, Bartunek J, El Oumeiri B, Touihri K, Hadad I, Thoma P, et al. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg 2009; 138: 646-653.

  • 94.

    Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 2005; 39: 733-742.

  • 95.

    Shintani Y, Fukushima S, Varela-Carver A, Lee J, Coppen SR, Takahashi K, et al. Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. J Mol Cell Cardiol 2009; 47: 288-295.

  • 96.

    Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 2008; 45: 530-544.

  • 97.

    Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661-669.

  • 98.

    Farahmand P, Lai TY, Weisel RD, Fazel S, Yau T, Menasche P, et al. Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation 2008; 118: S130-S137.

  • 99.

    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968.

  • 100.

    Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362: 697-703.

  • 101.

    Der Sarkissian S, Lvesque T, Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells 2017; 9: 9-25.

  • 102.

    Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2007; 77: 134-142.

  • 103.

    Emmert MY, Wolint P, Jakab A, Sheehy SP, Pasqualini FS, Nguyen TDL, et al. Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunctionFrom cardioprotection to functional repair in a translational pig infarction model. Biomaterials 2017; 122: 48-62.

  • 104.

    Dall C, Khan M, Chen CA, Angelos MG. Oxygen cycling to improve survival of stem cells for myocardial repair: a review. Life Sci 2016; 153: 124-131.

  • 105.

    Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, et al. Heat shock improves Sca1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: A critical role for HSF1/miR34a/HSP70 pathway. Stem Cells 2014; 32: 462-472.

  • 106.

    Kadivar M, Masoumi Ganjgah F. Effects of% 1 acute hypoxia on gene expression of connexin43 and CXCR4 in human bone marrow derived mesenchymal stem cells. Koomesh 2012; 13: 382-390. (Persian).

  • 107.

    Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circulation Res 2011; 109: 910-922.

  • 108.

    Madonna R, Petrov L, Teberino MA, Manzoli L, Karam J-P, Renna FV, et al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovasc Res 2015; 108: 39-49.

  • 109.

    Fakoya AO. New delivery systems of stem cells for vascular regeneration in ischemia. Front Cardiovasc Med 2017; 4: 7.

  • 110.

    Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35: 77-94.

  • 111.

    Silva LH, Cruz FF, Morales MM, Weiss DJ, Rocco PR. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Res Ther 2017; 8: 58.

  • 112.

    Rojas SV, Meier M, Zweigerdt R, Eckardt D, Rathert C, Schecker N, et al. Multimodal imaging for in vivo evaluation of induced pluripotent stem cells in a murine model of heart failure. Artif Organs 2017; 41: 192-199.

  • 113.

    Huang Z, Li C, Yang S, Xu J, Shen Y, Xie X, et al. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomedicine 2015; 10: 1679-1690.

  • 114.

    Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nature Commun 2017; 8: 13724.

  • 115.

    Tam C, Wong JH, Cheung RCF, Zuo T, Ng TB. Therapeutic potentials of short interfering RNAs. Appl Microbiol Biotechnol 2017; 101: 7091-7111.

  • 116.

    Lemcke H, Voronina N, Steinhoff G, David R. Recent progress in stem cell modification for cardiac regeneration. Stem Cells Int 2018; 2018: 1909346.

  • 117.

    Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cellbased therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 2017; 50: e12316.

  • 118.

    Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, et al. Bcl2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007; 25: 2118-2127.

  • 119.

    Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nature Med 2017; 23: 415.

  • 120.

    Jakob P, Landmesser U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res 2011; 93: 614-622.

  • 121.

    Zhang Ll, Liu JJ, Liu F, Liu WH, Wang YS, Zhu B, et al. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/-catenin signaling pathway. Biochem Biophys Res Commun 2012; 420: 875-881.

  • 122.

    Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circulation Res 2008; 102: 1319-1330.

  • 123.

    Jokerst JV, Cauwenberghs N, Kuznetsova T, Haddad F, Sweeney T, Hou J, et al. Circulating biomarkers to identify responders in cardiac cell therapy. Sci Rep 2017; 7: 4419.

  • 124.

    Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 2012; 153: 5361-5372.

  • 125.

    Lu G, Haider HK, Jiang S, Ashraf M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 2009; 119: 2587-2596.

  • 126.

    Hosoyama T, Samura M, Kudo T, Nishimoto A, Ueno K, Murata T, et al. Cardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart. Am J Transl Res 2015; 7: 2738-2751.

  • 127.

    Ichihara Y, Kaneko M, Yamahara K, Koulouroudias M, Sato N, Uppal R, et al. Self-assembling peptide hydrogel enables instant epicardial coating of the heart with mesenchymal stromal cells for the treatment of heart failure. Biomaterials 2018; 154: 12-23.

  • 128.

    Huang Z, Shen Y, Sun A, Huang G, Zhu H, Huang B, et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Res Ther 2013; 4: 149.

  • 129.

    Tilokee EL, Latham N, Jackson R, Mayfield AE, Ye B, Mount S, et al. Paracrine engineering of human explantderived cardiac stem cells to overexpress stromalcell derived factor 1 enhances myocardial repair. Stem Cells 2016; 34: 1826-1835.

  • 130.

    Seo HH, Lee SY, Lee CY, Kim R, Kim P, Oh S, et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart. J Vasc Res 2017; 54: 100-108.

  • 131.

    Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circulation Res 2005; 96: 151-163.

  • 132.

    Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005; 23: 845-856.

  • 133.

    Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005; 115: 572-583.

  • 134.

    Mazo M, Gavira JJ, Abizanda G, Moreno C, Ecay M, Soriano M, et al. Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant 2010; 19: 313-328.

  • 135.

    Menasch P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117: 1189-1200.

  • 136.

    Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009; 30: 2722-2732.

  • 137.

    Ott H, Bonaros N, Marksteiner R, Wolf D, Margreiter E, Schachner T, et al. Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. Eur J Cardiothorac Surg 2004; 25: 627-634.

  • 138.

    Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and restore cardiac function after myocardial infarction. Circulation 2013; 127: 213-223.

  • 139.

    Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008; 451: 937##.