Abstract
Keywords
Cancer Treatment Nanotechnology Nanoparticle. سرطان درمان نانوتکنولوژی نانوپارتیکل
References
-
1.
Williams J, Lansdown R, Sweitzer R, Romanowski M, LaBell R, Ramaswami R, et al. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release 2003; 28: 167-172.
-
2.
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55: 329-347.
-
3.
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161: 175-187.
-
4.
Leroux JC, Allemann E, Jaeghere FD, Doelker E, Gurny R. Biodegradable nanoparticlesFrom sustained release formulation to improved site specific drug delivery. J Control Release 1996; 30: 339-350.
-
5.
Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 2014; 79-80: 107-118.
-
6.
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161: 175-187.
-
7.
Ding Y, Li S, Nie G. Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine (Lond) 2013; 8: 1209-1222.
-
8.
Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-288.
-
9.
Alexis F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol 2010; 55-86.
-
10.
Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Symp 1975; 51: 135-153.
-
11.
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2: 750.
-
12.
Ozcelikkale A, Ghosh S, Han B. Multifaceted transport characteristics of nanomedicine: needs for characterization in dynamic environment. Mol Pharm 2013; 10: 2111-2126.
-
13.
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 2013; 24: 1159-1166.
-
14.
Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005; 4: 363-374.
-
15.
Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86: 215-223.
-
16.
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5: 1909-1917.
-
17.
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2: 904-908.
-
18.
Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16: 691-707.
-
19.
Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148: 135-146.
-
20.
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14: 228-241.
-
21.
Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008; 26: 57-64.
-
22.
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014; 2014: 814208.
-
23.
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387-6392.
-
24.
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63: 136-151.
-
25.
Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001; 73: 1590-1598.
-
26.
Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Mendrinos S, Sivridis E. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol Ther 2012; 13: 1284-1289.
-
27.
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 2017; 9: E46.
-
28.
Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 2015; 14: 115-124.
-
29.
Shao-Nan L, Cheng CJ, Song YY, Zhao ZG. Temperature-switched controlled release nanosystems based on molecular recognition and polymer phase transition. RSC Advances 2015; 5: 3248-3259.
-
30.
Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 2011; 108: 2426-2431.
-
31.
Mi Y, Wolfram J, Mu C, Liu X, Blanco E, Shen H, Ferrari M. Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol Res 2016; 113: 92-99.
-
32.
Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 2012; 159: 14-26.
-
33.
Caplan A, Kratz A. Prostate-specific antigen and the early diagnosis of prostate cancer. Am J Clin Pathol 2002; 117: S104-108.
-
34.
Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112: 335-340.
-
35.
Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticlesis mediated via sustained intracellular drug retention. Mol Pharm 2005; 2: 373-383.
-
36.
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7: 4391-4408.
-
37.
Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 2011; 17: 1315-1319.
-
38.
Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54: 561-587.
-
39.
Martnez A, Olmo R, Iglesias I, Teijn JM. Blanco MD Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterization. Pharm Res 2014; 31: 182-193.
-
40.
Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012; 8: 212-220.
-
41.
Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 1999; 31: 1111-1137.
-
42.
Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjugate Chem 2015; 26: 176-192.
-
43.
Rao C, Rangan VS, Deshpande S. Challenges in antibodydrug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis 2015; 7: 1561-1564.
-
44.
Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, Chauhan SC. Antibodydrug conjugates for cancer therapy. Pharmaceuticals (Basel) 2018; 11: E32.
-
45.
Diamantis N, Banerji U. Antibody-drug conjugates--an emerging class of cancer treatment. Br J Cancer 2016; 114: 362-367.
-
46.
Brissette R, Prendergast JK, Goldstein NI. Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Devel 2006; 9: 363-369.
-
47.
Shamsi F. Investigation of cellular response to covalent immobilization of peptide and hydrophobic attachment of peptide amphiphiles on substrates. Biochem Eng J 2017; 117: 82-88.
-
48.
Shamsi F, Coster HG. Mimicking cell membrane-like structures on alkylated silicon surfaces by peptide amphiphiles. Mater Chem Phys 2011; 130: 1162-1168.
-
49.
Shamsi F, Coster HG, Jolliffe KA, Chilcott T. Characterization of the substructure and properties of immobilized peptides on silicon surface. Mater Chem Phys 2011; 126: 955-961.
-
50.
Shamsi F, Coster HG, Jolliffe KA. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry. Surf Sci 2011; 605: 1763-1770.
-
51.
Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci 2013; 14: 13447-13462.
-
52.
Neri D, Bicknell R. Tumour vascular targeting,. Nat Rev Cancer 2005; 5: 436-446.
-
53.
Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature,. Drug Resistance Updates 2005; 8: 381-402.
-
54.
Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, et al. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7: 13446-13455.
-
55.
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer therapeutics in cancer: current and future. Cancers (Basel) 2018; 10: E80.
-
56.
Hori SI, Herrera A, Rossi JJ, Zhou J. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel) 2018; 10: E9.
-
57.
Zhou G, Latchoumanin O, Bagdesar M, Hebbard L, Duan W, Liddle C, et al. Aptamer-based therapeutic approaches to target cancer stem cells. Theranostics 2017; 7: 3948-3961.
-
58.
Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7: 13446-13463.
-
59.
Devasena U, Brindha P, Thiruchelvi R. A review on DNA nanobots- a new techniques for cancer treatment. Asian J Pharm Clin Res 2018; 11: 61-64.
-
60.
Glcia VS, Kleber VG, Fbio VC, Gabriela BR, Pedro AF, Roxana CI, Lourdes MB. Nanorobotics in drug delivery systems for treatment of cancer: A review. J Mat Sci Engin A 2016; 6: 167-180.
-
61.
Tripathi R, Kumar A. Application of nanorobotics for cancer treatmen. Materialstoday Proceed 2018; 5: 9114-9117.
-
62.
Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012; 335: 831-834.
-
63.
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 2018; 36: 258-264.
-
64.
Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 1998; 43: 879-886.
-
65.
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20: 409-416.
-
66.
Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001; 71: 39-51.
-
67.
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14: 1568-1573.
-
68.
Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 2001; 70: 353-363.
-
69.
Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000; 21: 1659-1668.
-
70.
Mller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4: 161-170.
-
71.
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54: 631-651.
-
72.
LGrislain, Couvreur P, Lenaerts V, Roland V, Deprez-Decampeneere D, Speiser P. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharmaceut 1983; 15: 335-345.
-
73.
Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19: 99-134.
-
74.
Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000; 199: 95-110.
-
75.
Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 1999; 57: 171-185.
-
76.
Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004; 93: 1804-1814.
-
77.
Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1DSC, differential scanning calorimetry; J Control Release 1997; 46: 223-231.
-
78.
Calvo P, Remuan-Lpez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14: 1431-1436.
-
79.
Chen Y, Mohanraj VJ, Parkin JE. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett Peptide Sci 2003; 10: 621-629.
-
80.
Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharmace 1993; 94: 115-123.
-
81.
Fresta M, Puglisi G, Giammona G, Cavallaro G, Micali N, Furneri PM. Pefloxacine mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. J Pharm Sci 1995; 84: 895-902.
-
82.
Chen Y, McCulloch RK, Gray BN. Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J Control Release 1994; 31: 49-54.
-
83.
Shamsi F, Coster H, Chilcott T. Characterization of the dielectric properties of covalently attached organic films on silicon surfaces. Thin Solid Films 2011, 915: p. 6472-6479.
-
84.
Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroud H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensin Biosensing Res 2016; 9: 17-22.
-
85.
Ansell SM, Harasym TO, Tardi PG, Buchkowsky SS, Bally MB, Cullis PR. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med 2000; 25: 51-68.
-
86.
Shamsi F, Coster H, Jolliffe KA. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry. Surface Science 2011; 605: 1763-1770.
-
87.
Shamsi F. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces. Colloids Surfaces B Biointerfaces 2016; 145: 470-478.
-
88.
Yi G, Son J, Yoo J, Park Ch, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomat Res 2018; 22: 13.
-
89.
Kummer U, Thierfelder S, Mysliwietz J. Antigen density on target cells determines the immunosuppressive potential of rat IgG2b monoclonal antibodies. Eur J Immunol 1990; 20: 107-112.
-
90.
Perry JL, Herlihy KP, Napier NE, Desimone JM. A novel platform toward shape and size specific nanoparticle theranostics Acc. Chem Res 2011; 44: 990-998.
-
91.
Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 2013; 110: 10753-10758.
-
92.
Nobs L, Buchegger F, Gurny R, Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004; 93: 1980-1992.
-
93.
Shi G, Guo W, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release 2002; 80: 309-319.
-
94.
Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001; 27: 165-176.
-
95.
Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2: 584-593.
-
96.
Steering Committee. Cancer progress report. Clin Cancer Res 2015; 21: S1-128.
-
97.
Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009; 100: 572-579.
-
98.
Nie S. Editorial: understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010; 5: 523-528.
-
99.
Bagi CM. Targeting of therapeutic agents to bone to treat metastatic cancer. Adv Drug Deliv Rev 2005; 57: 995-1010##.