Nanotechnology application in cancer treatment

authors:

avatar fahimeh shamsi , *


how to cite: shamsi F. Nanotechnology application in cancer treatment. koomesh. 2019;21(4):e153119. 

Abstract

Chemotherapy has been the main known treatment for cancer diseases. However, its achievement rate remains low, mainly because of the restricted accessibility of drugs to the tumor tissue, their painful toxicity, and development of multi-drug resistance. In recent years, either better understanding of tumor biology or development of the ever-growing field of nanotechnology has proposed new treatment strategies for cancer diseases. Conspiciously, at nano-scale range, particles act in surprising ways and the properties of materials alter as their size approaches the nanoscale which causes them to offer novel optical, electronic, and structural properties. In novel pharmaceutical science, nanoparticles engineer in such a way that is capable of carrying large doses of chemotherapeutic agents into cancer cells, while sparing normal tissues from dose-limiting side effects. New targeted drug delivery approaches using different nanosystems and bioconjugate techniques providing possibilities in developing successful cancer therapy. The present review summarizes two different targeted drug delivery methods (passive and active targeting) and also provides an insight into properties of nanoparticles in targeted drug delivery systems, bioconjugation, and challenges in this regard.

References

  • 1.

    Williams J, Lansdown R, Sweitzer R, Romanowski M, LaBell R, Ramaswami R, et al. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release 2003; 28: 167-172.

  • 2.

    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55: 329-347.

  • 3.

    Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161: 175-187.

  • 4.

    Leroux JC, Allemann E, Jaeghere FD, Doelker E, Gurny R. Biodegradable nanoparticlesFrom sustained release formulation to improved site specific drug delivery. J Control Release 1996; 30: 339-350.

  • 5.

    Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 2014; 79-80: 107-118.

  • 6.

    Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161: 175-187.

  • 7.

    Ding Y, Li S, Nie G. Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine (Lond) 2013; 8: 1209-1222.

  • 8.

    Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9: 257-288.

  • 9.

    Alexis F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol 2010; 55-86.

  • 10.

    Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Symp 1975; 51: 135-153.

  • 11.

    Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2: 750.

  • 12.

    Ozcelikkale A, Ghosh S, Han B. Multifaceted transport characteristics of nanomedicine: needs for characterization in dynamic environment. Mol Pharm 2013; 10: 2111-2126.

  • 13.

    Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 2013; 24: 1159-1166.

  • 14.

    Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005; 4: 363-374.

  • 15.

    Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86: 215-223.

  • 16.

    Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5: 1909-1917.

  • 17.

    Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2: 904-908.

  • 18.

    Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16: 691-707.

  • 19.

    Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148: 135-146.

  • 20.

    Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14: 228-241.

  • 21.

    Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008; 26: 57-64.

  • 22.

    Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014; 2014: 814208.

  • 23.

    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387-6392.

  • 24.

    Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63: 136-151.

  • 25.

    Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001; 73: 1590-1598.

  • 26.

    Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Mendrinos S, Sivridis E. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol Ther 2012; 13: 1284-1289.

  • 27.

    Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 2017; 9: E46.

  • 28.

    Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 2015; 14: 115-124.

  • 29.

    Shao-Nan L, Cheng CJ, Song YY, Zhao ZG. Temperature-switched controlled release nanosystems based on molecular recognition and polymer phase transition. RSC Advances 2015; 5: 3248-3259.

  • 30.

    Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 2011; 108: 2426-2431.

  • 31.

    Mi Y, Wolfram J, Mu C, Liu X, Blanco E, Shen H, Ferrari M. Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol Res 2016; 113: 92-99.

  • 32.

    Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 2012; 159: 14-26.

  • 33.

    Caplan A, Kratz A. Prostate-specific antigen and the early diagnosis of prostate cancer. Am J Clin Pathol 2002; 117: S104-108.

  • 34.

    Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112: 335-340.

  • 35.

    Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticlesis mediated via sustained intracellular drug retention. Mol Pharm 2005; 2: 373-383.

  • 36.

    Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7: 4391-4408.

  • 37.

    Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 2011; 17: 1315-1319.

  • 38.

    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54: 561-587.

  • 39.

    Martnez A, Olmo R, Iglesias I, Teijn JM. Blanco MD Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterization. Pharm Res 2014; 31: 182-193.

  • 40.

    Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012; 8: 212-220.

  • 41.

    Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 1999; 31: 1111-1137.

  • 42.

    Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjugate Chem 2015; 26: 176-192.

  • 43.

    Rao C, Rangan VS, Deshpande S. Challenges in antibodydrug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis 2015; 7: 1561-1564.

  • 44.

    Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, Chauhan SC. Antibodydrug conjugates for cancer therapy. Pharmaceuticals (Basel) 2018; 11: E32.

  • 45.

    Diamantis N, Banerji U. Antibody-drug conjugates--an emerging class of cancer treatment. Br J Cancer 2016; 114: 362-367.

  • 46.

    Brissette R, Prendergast JK, Goldstein NI. Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Devel 2006; 9: 363-369.

  • 47.

    Shamsi F. Investigation of cellular response to covalent immobilization of peptide and hydrophobic attachment of peptide amphiphiles on substrates. Biochem Eng J 2017; 117: 82-88.

  • 48.

    Shamsi F, Coster HG. Mimicking cell membrane-like structures on alkylated silicon surfaces by peptide amphiphiles. Mater Chem Phys 2011; 130: 1162-1168.

  • 49.

    Shamsi F, Coster HG, Jolliffe KA, Chilcott T. Characterization of the substructure and properties of immobilized peptides on silicon surface. Mater Chem Phys 2011; 126: 955-961.

  • 50.

    Shamsi F, Coster HG, Jolliffe KA. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry. Surf Sci 2011; 605: 1763-1770.

  • 51.

    Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci 2013; 14: 13447-13462.

  • 52.

    Neri D, Bicknell R. Tumour vascular targeting,. Nat Rev Cancer 2005; 5: 436-446.

  • 53.

    Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature,. Drug Resistance Updates 2005; 8: 381-402.

  • 54.

    Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, et al. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7: 13446-13455.

  • 55.

    Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer therapeutics in cancer: current and future. Cancers (Basel) 2018; 10: E80.

  • 56.

    Hori SI, Herrera A, Rossi JJ, Zhou J. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel) 2018; 10: E9.

  • 57.

    Zhou G, Latchoumanin O, Bagdesar M, Hebbard L, Duan W, Liddle C, et al. Aptamer-based therapeutic approaches to target cancer stem cells. Theranostics 2017; 7: 3948-3961.

  • 58.

    Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7: 13446-13463.

  • 59.

    Devasena U, Brindha P, Thiruchelvi R. A review on DNA nanobots- a new techniques for cancer treatment. Asian J Pharm Clin Res 2018; 11: 61-64.

  • 60.

    Glcia VS, Kleber VG, Fbio VC, Gabriela BR, Pedro AF, Roxana CI, Lourdes MB. Nanorobotics in drug delivery systems for treatment of cancer: A review. J Mat Sci Engin A 2016; 6: 167-180.

  • 61.

    Tripathi R, Kumar A. Application of nanorobotics for cancer treatmen. Materialstoday Proceed 2018; 5: 9114-9117.

  • 62.

    Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012; 335: 831-834.

  • 63.

    Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 2018; 36: 258-264.

  • 64.

    Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 1998; 43: 879-886.

  • 65.

    Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20: 409-416.

  • 66.

    Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001; 71: 39-51.

  • 67.

    Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14: 1568-1573.

  • 68.

    Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 2001; 70: 353-363.

  • 69.

    Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000; 21: 1659-1668.

  • 70.

    Mller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4: 161-170.

  • 71.

    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54: 631-651.

  • 72.

    LGrislain, Couvreur P, Lenaerts V, Roland V, Deprez-Decampeneere D, Speiser P. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharmaceut 1983; 15: 335-345.

  • 73.

    Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19: 99-134.

  • 74.

    Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000; 199: 95-110.

  • 75.

    Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 1999; 57: 171-185.

  • 76.

    Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004; 93: 1804-1814.

  • 77.

    Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1DSC, differential scanning calorimetry; J Control Release 1997; 46: 223-231.

  • 78.

    Calvo P, Remuan-Lpez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14: 1431-1436.

  • 79.

    Chen Y, Mohanraj VJ, Parkin JE. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett Peptide Sci 2003; 10: 621-629.

  • 80.

    Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharmace 1993; 94: 115-123.

  • 81.

    Fresta M, Puglisi G, Giammona G, Cavallaro G, Micali N, Furneri PM. Pefloxacine mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. J Pharm Sci 1995; 84: 895-902.

  • 82.

    Chen Y, McCulloch RK, Gray BN. Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J Control Release 1994; 31: 49-54.

  • 83.

    Shamsi F, Coster H, Chilcott T. Characterization of the dielectric properties of covalently attached organic films on silicon surfaces. Thin Solid Films 2011, 915: p. 6472-6479.

  • 84.

    Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroud H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensin Biosensing Res 2016; 9: 17-22.

  • 85.

    Ansell SM, Harasym TO, Tardi PG, Buchkowsky SS, Bally MB, Cullis PR. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med 2000; 25: 51-68.

  • 86.

    Shamsi F, Coster H, Jolliffe KA. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry. Surface Science 2011; 605: 1763-1770.

  • 87.

    Shamsi F. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces. Colloids Surfaces B Biointerfaces 2016; 145: 470-478.

  • 88.

    Yi G, Son J, Yoo J, Park Ch, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomat Res 2018; 22: 13.

  • 89.

    Kummer U, Thierfelder S, Mysliwietz J. Antigen density on target cells determines the immunosuppressive potential of rat IgG2b monoclonal antibodies. Eur J Immunol 1990; 20: 107-112.

  • 90.

    Perry JL, Herlihy KP, Napier NE, Desimone JM. A novel platform toward shape and size specific nanoparticle theranostics Acc. Chem Res 2011; 44: 990-998.

  • 91.

    Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 2013; 110: 10753-10758.

  • 92.

    Nobs L, Buchegger F, Gurny R, Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004; 93: 1980-1992.

  • 93.

    Shi G, Guo W, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release 2002; 80: 309-319.

  • 94.

    Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001; 27: 165-176.

  • 95.

    Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2: 584-593.

  • 96.

    Steering Committee. Cancer progress report. Clin Cancer Res 2015; 21: S1-128.

  • 97.

    Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009; 100: 572-579.

  • 98.

    Nie S. Editorial: understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010; 5: 523-528.

  • 99.

    Bagi CM. Targeting of therapeutic agents to bone to treat metastatic cancer. Adv Drug Deliv Rev 2005; 57: 995-1010##.