Anti-cancer and anti-bacterial effects of crude venom of Pseudocerastes persicus snake

authors:

avatar Jamil Zargan , * , avatar Majid Mirzaei Nodooshan ORCID , avatar Hossein Sobati , avatar Hamidreza Goodarzi , avatar jamil zargan , avatar firoz Ebrahimi


how to cite: Zargan J, Mirzaei Nodooshan M, Sobati H, Goodarzi H, zargan J, et al. Anti-cancer and anti-bacterial effects of crude venom of Pseudocerastes persicus snake. koomesh. 2020;22(3):e153209. 

Abstract

Introduction: Antibiotic resistance has been reported as one of the world;#39s most critical public health problems. Recent investigations have demonstrated that venom of some species of snakes have antimicrobial and anticancer activities. In this study, we investigated the antibacterial and anticancer effects of Persian horned viper venom. Antibacterial activity was examined on Escherichia coli, Bacillus subtilis and Staphylococcus aureus bacteria and antitumor effect was analyzed on human hepatocellular liver carcinoma cell line (HepG2). Materials and Methods: Bactericidal-activity of crude venom in concentrations of 6.25-400 μg/ml was performed using MTT reduction, minimum inhibitory concentration (MIC), agar-well diffusion and disc diffusion methods. Tetracycline (50 μg/ml) was used as standard antibiotic. Cytotoxic effect in HepG2 cell were measured by MTT reduction assay and confirmed with neutral uptake assay following exposure of cells with different concentrations of venom (50-400 μg/ml). Apoptotic effect was investigated using comet assay. Results: Our findings demonstrated that venom displays higher inhibitory effects against Gram-positive bacteria as compared to Gram-negative. Furthermore, venom showed anticancer activity on HepG2 cell line through induction of apoptosis and necrosis. Conclusion: This study showed that raw venom of Iranian horned viper has antibacterial and anti-cancer activity. These properties make venom of this viper a potential source for isolation of effective molecule(s) having antibacterial and antitumor activity.

References

  • 1.

    Moridikia A, Zargan J, Sobati H, Goodarzi HR, Hajinoormohamaadi A. Anticancer and antibacterial Effects of Iranian Viper (Vipera latifii) Venom; an in-vitro study. J Cell Physiol 2018; 233: 6790-6797.

  • 2.

    Chellapandi P, Jebakumar SR. Purification and antibacterial activity of Indian cobra and viper venoms. Electron J Biol 2008; 4.

  • 3.

    Sachidananda MK, murari SK, channe gowda D. Characterization of an antibacterial peptide from indian cobra (naja naja) venom. J Venom Anim Toxins Incl 2007; 1678-9199.

  • 4.

    Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein EJ. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. J Infect Dis 1991; 164: 195-198.

  • 5.

    Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 2003; 60: 2651-2668.

  • 6.

    Ferreira S. A bradykinin-potentiating factor (bpf) present in the venom of Bothrops jararaca. Br J Pharmacol 1965; 24: 163-169.

  • 7.

    Aloof-Hirsch S, de Vries A, Berger A. The direct lytic factor of cobra venom: purification and chemical characterization. Biochim Biophys Acta 1968; 22: 53-60.

  • 8.

    Stiles BG, Sexton FW, Weinstein SA. Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon 1991; 29: 1129-1141.

  • 9.

    Lu QM, Wei Q, Jin Y, Wei JF, Wang WY, Xiong YL. L-Amino acid oxidase from Trimeresurus jerdonii snake venom: purification, characterization, platelet aggregation-inducing and antibacterial effects. J Natural Toxins 2002; 11: 345-352.

  • 10.

    Xie JP, Yue J, Xiong YL, Wang WY, Yu SQ, Wang HH. In vitro activities of small peptides from snake venom against clinical isolates of drugresistant Mycobacterium tuberculosis. Int J Antimicrob Agents 2003; 22: 172-174.

  • 11.

    Vyas VK, Brahmbhatt K, Bhatt H, Parmar U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed 2013; 3: 156-162.

  • 12.

    Latifi M. Iranian Snakes. Environmental Protection Agency Publications 1379; 444-445. (Persian).

  • 13.

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.

  • 14.

    Johrai B, Zargan J. Simultaneous targeted inhibition of Sox2-Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biol Int 2017; 41: 1335-1344.

  • 15.

    Husniye TY, Mehmet OO, Bayram G, Ayse N. Effect of ottoman viper (montivipera xanthine (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology 2013.

  • 16.

    Hosseinpour M, Zargan J, Honari H, Haji Nour Mohammadi A, Ahmad Heidari, Zaman E. Introduction of dianthins: a new promising horizon toward continuous research on breast cancer bulldozing in Iran. Int J Med Toxicol Forensic Med 2019. (Persian).

  • 17.

    Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45: 493-496.

  • 18.

    Torres AF, Dantas RT, Menezes RR, Toyama MH, Filho ED, Oliveira MF, et al. Antimicrobial activity of an L-amino acid oxidase isolated from Bothrops leucurus snake venom. J Venom Anim Toxins incl Trop Dis 2010; 16: 614-622.

  • 19.

    Zargan J, Sajad M, Umar S, Naime M, Shakir A, Haider AK. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp Mol Pathol 2011; 91: 447-454.

  • 20.

    Abdul W, Yamin B, Sobia N, Fayyaz M, Sumaira S, Muhammad Zia. Inhibition of human breast and colorectal cancer cells by Viburnumfoetens L. extracts in vitro. Asian Pac J Trop Dis 2013; 3: 32-36.

  • 21.

    Mousavi M, Zargan J, Haji Noor Mohammadi A, Goudarzi HR, Dezianian S, Keshavarz Alikhani H, Johari B. Anticancer effects of the Latrodectus dahli crude venom on MCF-7 breast cancer cell line. Breast J 2019; 25: 781-782.

  • 22.

    Ferreira BL, Santos DO, Santos AL, Rodrigues CR, Freitas C, Cabral CL, Castro HC. Comparative analysis of viperidae venoms antibacterial prole: a short communication for proteomicsp. Evid Based Complement Altern Med 2011; 2008: 1-4.

  • 23.

    Jorge RJ, Martins AM, Morais IC, Ximenes RM, Rodrigues FA, Soares BM, et al. In vitro studies on Bothrops venoms cytotoxic effect on tumor cells. J Exp Ther Oncol 2011; 9: 249-253.

  • 24.

    Senthilraja P, Kathiresan K. In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF -7 cell lines study of Marine Yeast. J Appl Pharmace Sci 2015; 5 080-084. Available http://www.japsonline.com.

  • 25.

    San TM, Vejayan J, Shanmugan K, Ibrahim H. Screening antimicrobial activity of venoms from snakes commonly found in Malasia. J Appl Sci 2010; 10: 2328-2332.

  • 26.

    de Lima DC, Alvarez Abreu P, de Freitas CC, Santos DO, Borges RO, Dos Santos TC, et al. Snake venom: any clue for antibiotics and CAM. Evid Based Complement Alternat Med 2005; 2: 39-47.

  • 27.

    Stbeli RG, Marcussi S, Carlos GB, Pietro RC, Selistre-de-Arajo HS, Giglio JR, et al. Platelet aggregation and antibacterial effects of an L-amino acid oxidase purified from Bothrops alternatus snake venom. Bioorg Med Chem 2004; 12: 2881-2886.

  • 28.

    Jami al ahmadi A, Fathi B, Jamshidi A, Zolfagharian H, Mirakabbadi AZ. Investigation of the antibacterial effect of venom of the Iranian snake echis carinatus. Iran J Veterin Sci Technol 2010; 2: 93-100.

  • 29.

    Bustillo S, Leiva CL, Merino L, Acosta O, Kier Joff EB, Gorodner OJ. Antimicrobial activity of Bothrops alternatus venom from the northeast of argentine. Medigraphic 2008; 50: 79-82.

  • 30.

    Deepika J, Sudhir K. Snake Venom: a potent anticancer agent. Asian Pacific J Cancer Prev 2012; 13: 4855-4860.

  • 31.

    Bosmans F, MartinEauclaire MF, Tytgat J. The depressant scorpion neurotoxin LqqIT2 selectively modulates the insect voltage gated sodium channel. Toxicon 2005; 45: 501-507.

  • 32.

    Cancer Control Office, Iranian Ministry of Health. Iranian annual cancer registration report. Ministry Health Public 2005. (Persian).

  • 33.

    Song JK, Jo MR, Park MH, Song HS, An BJ, Song MJ, et al. Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor kappaB and signal transducer and activator of transcription 3. Arch Pharm Res 2012; 35: 867-876.

  • 34.

    Yang SH, Chien CM, Lu MC, Lin YH, Hu XW, Lin SR. Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Exp Mol Med 2006; 38: 435-444.