Abstract
Keywords
Alzheimer Disease Metabolomics Nuclear Magnetic Resonance Spectroscopy آلزایمر متابولومیکس طیف سنجی رزونانس مغناطیس هسته
References
-
1.
Johnson ECB, Dammer EB, Duong DM, Yin L, Thambisetty M, Troncoso JC, et al. Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 2018; 13(1): 52.
-
2.
Korolainen MA, Nyman TA, Aittokallio T, Pirttil T. An update on clinical proteomics in Alzheimer's research. J Neurochem 2010; 112: 1386-1414.
-
3.
Selkoe DJ. Alzheimer's disease. In the beginning. Nature 1991; 354; 432-433.
-
4.
Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63: 168-174.
-
5.
Bertram L, Tanzi RE. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 2008; 9: 768-778.
-
6.
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921-923.
-
7.
Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 2011; 16: 903-907.
-
8.
Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009; 302: 385-393.
-
9.
Valotassiou V, Malamitsi J, Papatriantafyllou J, Dardiotis E, Tsougos I, Psimadas D, et al. SPECT and PET imaging in Alzheimer's disease. Ann Nucl Med 2018; 32: 583-593.
-
10.
Gao F, Barker PB. Various MRS application tools for Alzheimer disease and mild cognitive impairment. AJNR Am J Neuroradiol 2014; 35: S1-S4.
-
11.
Joe E, Medina LD, Ringman JM, O'Neill J. (1)H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease. Brain Imaging Behav 2019; 13: 925-932.
-
12.
Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 2008; 8: 617-633.
-
13.
Farrokhi Yekta R, Rezaie Tavirani M, Arefi Oskouie A, Mohajeri-Tehrani MR, Soroush AR. The metabolomics and lipidomics window into thyroid cancer research. Biomarkers 2017; 22: 595-603.
-
14.
Oskouie AA, Taheri S. Recent developments and application of metabolomics in cancer diseases. J Paramed Sci 2015; 6: 116-134.
-
15.
Gonzlez-Domnguez R, Sayago A, Fernndez-Recamales . Metabolomics in Alzheimer's disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071: 75-92.
-
16.
Paxinos G. The Rat Nervous System: Elsevier Science; 2014.
-
17.
Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res 2008; 36: D402-D408.
-
18.
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018; 46: D608-D617.
-
19.
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 2015; 43: W251-W257.
-
20.
Holliday MA. Metabolic rate and organ size during growth from infancy to maturity and during late gastation and early infancy. Pediatrics 1971; 47: 169.
-
21.
Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res 1999; 24: 321-329.
-
22.
Wijesekara N, Gonalves RA, De Felice FG, Fraser PE. Impaired peripheral glucose homeostasis and Alzheimer's disease. Neuropharmacology 2018; 136: 172-181.
-
23.
Abolhassani N, Leon J, Sheng Z, Oka S, Hamasaki H, Iwaki T, et al. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mech Ageing Dev 2017; 161: 95-104.
-
24.
Cunnane SC, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, Pierotti T, Fortier M, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease. Ann N Y Acad Sci 2016; 1367: 12-20.
-
25.
Swerdlow RH. Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. J Alzheimers Dis 2018; 62: 1403-1416.
-
26.
Wilkins HM, Swerdlow RH. Relationships between mitochondria and neuroinflammation: implications for Alzheimer's disease. Curr Top Med Chem 2016; 16: 849-857.
-
27.
Zhang M, Cheng X, Dang R, Zhang W, Zhang J, Z Y. Lactate deficit in an Alzheimer disease mouse model: the relationship with neuronal damage. J Neuropathol Exp Neurol 2018; 77: 1163-1176.
-
28.
Jiang N, Yan X, Zhou W, Zhang Q, Chen H, Zhang Y, et al. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse. J Proteome Res 2008; 7: 3678-3686.
-
29.
Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta 2010; 1802: 2-10.
-
30.
Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 2014; 1842: 1240-1247.
-
31.
Harris RA, Tindale L, Cumming RC. Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 2014; 15: 559-577.
-
32.
Zhao G, He F, Wu C, Li P, Li N, Deng J, et al. Betaine in Inflammation: Mechanistic Aspects and Applications. Front Immunol 2018; 9: 107.
-
33.
Leiteritz A, Dilberger B, Wenzel U, Fitzenberger E. Betaine reduces -amyloid-induced paralysis through activation of cystathionine--synthase in an Alzheimer model of Caenorhabditis elegans. Genes Nutr 2018; 13: 21.
-
34.
Fernstrom JD. Branched-chain amino acids and brain function. J Nutr 2005; 135: 1539S-1546S.
-
35.
Fekkes D, van der Cammen TJ, van Loon CP, Verschoor C, van Harskamp F, de Koning I, et al. Abnormal amino acid metabolism in patients with early stage Alzheimer dementia. J Neural Transm (Vienna) 1998; 105: 287-294.
-
36.
Mahajan UV, Varma VR, Griswold ME, Blackshear CT, An Y, Oommen AM, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med 2020; 17: e1003012.
-
37.
Zafrilla P, Mulero J, Xandri JM, Santo E, Caravaca G, Morillas JM. Oxidative stress in Alzheimer patients in different stages of the disease. Curr Med Chem 2006; 13: 1075-1083.
-
38.
Liu H, Wang H, Shenvi S, Hagen TM, Liu RM. Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 2004; 1019: 346-349.
-
39.
Cooper AJL, Jeitner TM. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 2016; 6: 16.
-
40.
Morris MS. Homocysteine and Alzheimer's disease. Lancet Neurol 2003; 2: 425-428.
-
41.
Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, et al. Homocysteine as a predictor of cognitive decline in Alzheimer's disease. Int J Geriatr Psychiatry 2010; 25: 82-90.
-
42.
Papp KV, Walsh SJ, Snyder PJ. Immediate and delayed effects of cognitive interventions in healthy elderly: a review of current literature and future directions. Alzheimers Dement 2009; 5: 50-60.
-
43.
Hansmannel F, Sillaire A, Kamboh MI, Lendon C, Pasquier F, Hannequin D, et al. Is the urea cycle involved in Alzheimer's disease? J Alzheimers Dis 2010; 21: 1013-1021.
-
44.
Jko H, Lukiw WJ, Wilkaniec A, Cielik M, Gssowska-Dobrowolska M, Murawska E, et al. Altered expression of Urea cycle enzymes in amyloid- protein precursor overexpressing PC12 cells and in sporadic Alzheimer's disease brain. J Alzheimers Dis 2018; 62: 279-291.
-
45.
Bergen AA, Kaing S, ten Brink JB, Netherlands Brain B, Gorgels TG, Janssen SF. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics 2015; 16: 956.##.