Antibody titers of PEG-PLA block copolymer nanosphere containing chimeric recombinant protein of protective antigen and lethal factor of Bacillus anthracis

authors:

avatar Hossein Honari ORCID , * , avatar Mohammadebrahim Minaei , avatar Hasan Mirhaj , avatar Seyyed Masih EtemadAyoubi


how to cite: Honari H, Minaei M, Mirhaj H, EtemadAyoubi S M. Antibody titers of PEG-PLA block copolymer nanosphere containing chimeric recombinant protein of protective antigen and lethal factor of Bacillus anthracis. koomesh. 2021;23(4):e153272. 

Abstract

Introduction: To date, many vaccines have been developed for anthrax but not yet an ideal vaccine. In this study, chimeric protein containing domain 1 lethal factor and domain 4 protective antigens of Bacillus anthracis in copolymer nanocapsules were used to solve the problems caused by existing vaccines and to increase the efficiency of the proposed vaccine. Materials and Methods: In this experimental study, dual solvent evaporation method was used to produce nanocapsules containing chimeric recombinant protein of protective antigen and lethal factor of Bacillus anthracis. Zeta potential of nanoparticles, nanoparticle loading efficiency, recombinant protein release pattern, potential effect of poly (lactic acid)- poly (ethylene glycol) nanoparticle (PLA-PEG) production on the viability of recombinant proteins were investigated. Mice were used as test and control samples for antibody production and immune response evaluation. Results: The mean antibody titer produced against chimeric proteins loading was significantly different from that of free antigens. Correspondingly, the difference in antibody titer was significant between the groups of one and two times’ injection of loading and free antigens and the most antibody titer was related to two times injections of loading antigens. In addition, there was a significant difference between one times injection of loading and the free antigens. This suggests that the loading chimeric antigen on PLA-PEG nanoparticles and one time injection (instead of four times injections) could produce more antibodies. Conclusion: The results of this study showed that the domain 4 protective antigens and the domain 1 lethal factor of Bacillus anthracis could chimeric with each other and produced the active antigen. This chimeric antigen (LFD1-PA4) is active and able to inducing the animal;#39s immune system. In addition, nanocarriers containing controlled release antigens can induce the immune system of the animal.

References

  • 1.

    Patocka J, Splino M. Anthrax toxin characterization. Acta Medica (Hradec Kralove) 2002; 45: 3-5. https://doi.org/10.14712/18059694.2019.49.

  • 2.

    Bartlett JG, Inglesby TV Jr, Borio L. Management of anthrax. Clin Infect Dis 2002; 35: 851-858. https://doi.org/10.1086/341902 PMid:12228822.

  • 3.

    Flick-Smith HC, Eyles JE, Hebdon R, Waters EL, Beedham RJ, Stagg TJ, Williamson ED. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect Immun 2002; 70: 2022-2028. https://doi.org/10.1128/IAI.70.3.1653-1656.2002 https://doi.org/10.1128/IAI.70.4.2022-2028.2002 PMid:11895967 PMCid:PMC127835.

  • 4.

    Chichester JA, Musiychuk K, de la Rosa P, Horsey A, Stevenson N, Ugulava N, Yusibov, V. Immunogenicity of a subunit vaccine against Bacillus anthracis. Vaccine 2007; 25: 3111-3114. https://doi.org/10.1016/j.vaccine.2007.01.068 PMid:17280756.

  • 5.

    Hepburn MJ, Dyson EH, Simpson AJ, Brenneman KE, Bailey N, Wilkinson L, Baillie LW. Immune response to two different dosing schedules of the anthrax vaccine precipitated (AVP) vaccine. Vaccine 2007; 25: 6089-6097. https://doi.org/10.1016/j.vaccine.2007.05.018 PMid:17604880.

  • 6.

    Wei Y, Wang Y, Kang A, Wang W, Ho SV, Gao J, Su Z. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles. Mol Pharm 2012; 9: 2039-2048. https://doi.org/10.1021/mp300126t PMid:22663348.

  • 7.

    Zhang Y, Wu X, Han Y, Mo F, Duan Y, Li S. Novel thymopentin release systems prepared from bioresorbable PLA-PEG-PLA hydrogels. Int J Pharm 2010; 386: 15-22. https://doi.org/10.1016/j.ijpharm.2009.10.045 PMid:19895878.

  • 8.

    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3: 1377-1397. https://doi.org/10.3390/polym3031377 PMid:22577513 PMCid:PMC3347861.

  • 9.

    Des Rieux A, Fievez V, Garinot M, Schneider YJ, Prat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116: 1-27. https://doi.org/10.1016/j.jconrel.2006.08.013 PMid:17050027.

  • 10.

    Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285: 115-132. https://doi.org/10.1111/nyas.12046 PMid:23527566.

  • 11.

    Moyle PM. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35: 375-389. https://doi.org/10.1016/j.biotechadv.2017.03.005 PMid:28288861.

  • 12.

    Albrecht MT, Li H, Williamson ED, LeButt CS, Flick-Smith HC, Quinn CP, Groen H. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect Immun 2007; 75: 5425-5433. https://doi.org/10.1128/IAI.00261-07 PMid:17646360 PMCid:PMC2168292.

  • 13.

    Nguyen ML, Crowe SR, Kurella S, Teryzan S, Cao B, Ballard JD, Farris AD. Sequential B-cell epitopes of Bacillus anthracis lethal factor bind lethal toxin-neutralizing antibodies. Infect Immun 2009; 77: 162-169. https://doi.org/10.1128/IAI.00788-08 PMid:18981257 PMCid:PMC2612257.

  • 14.

    Ghasemi R, Abdollahi M, Zadeh EE, Khodabakhshi K, Badeli A, Bagheri H, et al. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Scientific Rep 2018; 8: 9854. https://doi.org/10.1038/s41598-018-28092-8 PMid:29959339 PMCid:PMC6026132.

  • 15.

    Singh N, Mandal AK, Ahmed Khan Z. Fabrication of PLA-PEG nanoparticles as delivery systems for improved stability and controlled release of catechin. J Nanomaterials 2017; 1-9. https://doi.org/10.1155/2017/6907149.

  • 16.

    Mosayebi G, Abtahi H, Ghazavi A, Zareinfar N. Design of enzyme-linked immunosorbent assay method for detection of anti-streptolysin-O antibodies on base of recombinant streptolysin-O. Koomesh J 2012; 13: 362-367. (Persian).

  • 17.

    Brey RN. Molecular basis for improved anthrax vaccines. Adv Drug Deliv Rev 2005; 57: 1266-1292. https://doi.org/10.1016/j.addr.2005.01.028 PMid:15935874.

  • 18.

    Bell M. DNA vaccine protects against anthrax. Am Soc Microbiol Biodefense Res Meet Baltimore. 2004.

  • 19.

    McComb RC, Martchenko M. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-the first step toward a rationally designed anthrax vaccine. Vaccine 2016; 34: 13-19. https://doi.org/10.1016/j.vaccine.2015.11.025 PMid:26611201.

  • 20.

    Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN, Altmann DM. An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine 2010; 28: 6740-6748. https://doi.org/10.1016/j.vaccine.2010.07.075 PMid:20691267 PMCid:PMC3008506.

  • 21.

    Makam SS, Kingston JJ, Harischandra MS, Batra HV. Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Mol Immunol 2014; 59: 91-99. https://doi.org/10.1016/j.molimm.2014.01.012 PMid:24513572.

  • 22.

    Rezaee M, Honari H, Kooshk MR. Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody. Mol Biol Rep 2014; 41: 2445-2452. https://doi.org/10.1007/s11033-014-3099-4 PMid:24430302.

  • 23.

    Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect Immu 2001; 69: 4509-4515. https://doi.org/10.1128/IAI.69.7.4509-4515.2001 PMid:11401993 PMCid:PMC98526.

  • 24.

    Wu G, Hong Y, Guo A, Feng C, Cao S, Zhang CC, Liu Z. A chimeric protein that functions as both an anthrax dual-target antitoxin and a trivalent vaccine. Antimicrob Agents Chemother 2010; 54: 4750-4757. https://doi.org/10.1128/AAC.00640-10 PMid:20713663 PMCid:PMC2976106.

  • 25.

    Makam SS, Kingston JJ, Harischandra MS, Batra HV. Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Mol Immunol 2014; 59: 91-99. https://doi.org/10.1016/j.molimm.2014.01.012 PMid:24513572.

  • 26.

    Shcherbinin DN, Esmagambetov IB, Noskov AN, Tutykhina IL, Shmarov MM, Logunov DY, Gintsburg AL. Protective immune response against Bacillus anthracis induced by intranasal introduction of a recombinant adenovirus expressing the protective antigen fused to the Fc-fragment of IgG2a. Acta Natur 2014; 6: 20. https://doi.org/10.32607/20758251-2014-6-1-76-84 https://doi.org/10.32607/20758251-2014-76-84.

  • 27.

    Varshney A, Puranik N, Kumar M, Goel AK. Immunogenecity of a chimeric protein of Bacillus anthracis protective antigen and lethal factor in murine model. Int J Infect Dis 2016; 45: 426. https://doi.org/10.1016/j.ijid.2016.02.906 https://doi.org/10.1016/j.ijid.2016.02.907.

  • 28.

    Abdous M, Hasannia S, Salmanian AH, Shahryar Arab S, Shali A, Alizadeh GA, Mohseni A. A new triple chimeric protein as a high immunogenic antigen against anthrax toxins: theoretical and experimental analyses. Immunopharmacol Immunotoxicol 2018; 1-7. https://doi.org/10.1080/08923973.2018.1510419 PMid:30621469.