Occurrence and fate of emerging pollutants of 17beta-estradiol and testosterone in hospital wastewater and effluent: The effect of activated sludge and chlorination processes

authors:

avatar Maliheh Joshani kheybari , avatar Ayat Rahmani ORCID , avatar Hossein Nazari , avatar Khalilollah Moeinian ORCID , *


How To Cite Joshani kheybari M, Rahmani A, Nazari H, Moeinian K. Occurrence and fate of emerging pollutants of 17beta-estradiol and testosterone in hospital wastewater and effluent: The effect of activated sludge and chlorination processes. koomesh. 2021;23(4):e153277. 

Abstract

Introduction: In 2015, the European Union placed estrogen hormones on the list of compounds with a possible real risk to living organisms and emphasized the need for environmental research. The aim of this study was to determine the occurrence and effect of activated sludge process and chlorination on the fate of 17-beta estradiol and testosterone in hospital wastewater. Materials and Methods: In this descriptive-analytical study, for each hormone, 18 samples were taken from different parts of a real scale treatment plant in a three months period. Hormone extraction was performed by solid phase extraction using selective C18 cartridge. The extracted hormones were assayed by ELISA specific kits (IBL, Germany). Data analysis was performed using SPSS software version 22 and Mann-Whitney and Wilcoxon statistical tests. Results: The minimum concentration observed in raw wastewater was related to 17β-estradiol and in the final effluent was related to testosterone. The mean concentration of testosterone in raw wastewater (6.08 ng/l) was significantly higher than the 17β-estradiol concentration (4.13 ng/l), but the difference in the mean concentrations (around 1 ng/l) of the two hormones in the final effluent was not significant. The overall efficiency of the activated sludge and chlorination processes in the removal of testosterone and 17β-estradiol was observed to be about 85% and 76%, respectively. Conclusion: Although the treatment processes can reduce considerably the concentration of 17β -estradiol and testosterone, but the final hormones concentrations indicated that the type of effluent reuse and capacity of the receiving water resources must be considered.

References

  • 1.

    Cai K, Phillips DH, Elliott CT, Muller M, Scippo ML, Connolly L. Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials. Sci Total Environ 2013; 461: 1-9. https://doi.org/10.1016/j.scitotenv.2013.04.088 PMid:23712110.

  • 2.

    Jafari A, Abasabad R, Salehzadeh A. Endocrine disrupting contaminants in water resources and sewage in Hamadan City of Iran. J Environ Health Sci Engin 2009; 6: 89-96. (Persian).##.

  • 3.

    Verlicchi P, Galletti A, Petrovic M, Barcel D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrology 2010; 389: 416-428. https://doi.org/10.1016/j.jhydrol.2010.06.005##.

  • 4.

    Manickum T, John W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Sci Total Environ 2014; 468: 584-597. https://doi.org/10.1016/j.scitotenv.2013.08.041 PMid:24056449##.

  • 5.

    Santiago-Morales J, Agera A, del Mar Gmez M, Fernndez-Alba AR, Gimnez J, Esplugas S, et al. Transformation products and reaction kinetics in simulated solar light photocatalytic degradation of propranolol using Ce-doped TiO2. Appl Catalys B Environ 2013; 129: 13-29. https://doi.org/10.1016/j.apcatb.2012.09.023##.

  • 6.

    Thomas KV, Langford K. Occurrence of pharmaceuticals in the aqueous environment. Compreh Analyt Chem 2007; 50: 337-359. https://doi.org/10.1016/S0166-526X(07)50010-3##.

  • 7.

    Arnold WA, McNeill K. Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. Compreh Analyt Chem 2007; 50: 361-385. https://doi.org/10.1016/S0166-526X(07)50011-5##.

  • 8.

    Mohagheghian A, Nabizadeh R, Mesdghinia A, Rastkari N, Mahvi AH, Alimohammadi M, et al. Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. J Environ Health Sci Engin 2014; 12: 97. https://doi.org/10.1186/2052-336X-12-97 PMid:25013724 PMCid:PMC4091687##.

  • 9.

    Vulliet E, Cren-Oliv C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 2011; 159: 2929-2934. https://doi.org/10.1016/j.envpol.2011.04.033 PMid:21570166##.

  • 10.

    Ejhed H, Fng J, Hansen K, Graae L, Rahmberg M, Magnr J, et al. The effect of hydraulic retention time in onsite wastewater treatment and removal of pharmaceuticals, hormones and phenolic utility substances. Sci Total Environ 2018; 618: 250-261. https://doi.org/10.1016/j.scitotenv.2017.11.011 PMid:29128774##.

  • 11.

    Kase R, Javurkova B, Simon E, Swart K, Buchinger S, Knemann S, et al. Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC Trends Analyt Chem 2018; 102: 343-358. https://doi.org/10.1016/j.trac.2018.02.013##.

  • 12.

    Jaukovi ZD, Gruji SD, Bujagi IV, Lauevi MD. Determination of sterols and steroid hormones in surface water and wastewater using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Microchemical J 2017; 135: 39-47. https://doi.org/10.1016/j.microc.2017.07.011##.

  • 13.

    Arlos MJ, Parker WJ, Bicudo JR, Law P, Marjan P, Andrews SA, et al. Multi-year prediction of estrogenicity in municipal wastewater effluents. Sci Total Environ 2018; 610: 1103-1112. https://doi.org/10.1016/j.scitotenv.2017.08.171 PMid:28847104##.

  • 14.

    Takdastan A, Nazarzadeh A, Oroogi N, Javanmardi P. Performance of municipal and hospital wastewater treatment plants in removal of estrogenic compounds. J Mazandaran Univ Med Sci 2016; 26: 103-110. (Persian).##.

  • 15.

    Hartmann J, Beyer R, Harm S. Effective removal of estrogens from drinking water and wastewater by adsorption technology. Environ Proc 2014; 1: 87-94. https://doi.org/10.1007/s40710-014-0005-y##.

  • 16.

    Shargil D, Gerstl Z, Fine P, Nitsan I, Kurtzman D. Impact of biosolids and wastewater effluent application to agricultural land on steroidal hormone content in lettuce plants. Sci Total Environ 2015; 505: 357-366. https://doi.org/10.1016/j.scitotenv.2014.09.100 PMid:25461037##.

  • 17.

    Zhang JN, Ying GG, Yang YY, Liu WR, Liu SS, Chen J, et al. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China. Chemosphere 2018; 201: 644-654. https://doi.org/10.1016/j.chemosphere.2018.02.144 PMid:29547853##.

  • 18.

    Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, Van Leeuwen J. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 2006; 40: 6537-6546. https://doi.org/10.1021/es0607739 PMid:17144275##.

  • 19.

    Kesinov Z, Linhartova L, Filipov A, Ezechi M, Man P, Cajthaml T. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnol 2018; 43: 53-61. https://doi.org/10.1016/j.nbt.2017.05.004 PMid:28502780##.

  • 20.

    Amin MM, Bina B, Ebrahimi A, Yavari Z, Mohammadi F, Rahimi S. The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran. Chin J Chem Engin 2018; 26: 1132-1139. https://doi.org/10.1016/j.cjche.2017.09.005##.

  • 21.

    Vlitalo P, Massei R, Heiskanen I, Behnisch P, Brack W, Tindall AJ, et al. Effect-based assessment of toxicity removal during wastewater treatment. Water Res 2017; 126: 153-163. https://doi.org/10.1016/j.watres.2017.09.014 PMid:28941401.

  • 22.

    Doustmohamadian S, Ghorbani R, Soghandi S. Is poor glycemic control associated with free testosterone level in Iranian diabetic men? Koomesh 2019; 21. (Persian).##.

  • 23.

    Rahimi MR, Khodamoradi M, Falah F. Effects of caffeine consumption before resistance exercise on blood levels of testosterone and growth hormones in male athletes. Koomesh 2019; 21: 679-685. (Persian).##.

  • 24.

    Al Aukidy M, Verlicchi P, Voulvoulis N. A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Sci Total Environ 2014; 493: 54-64. https://doi.org/10.1016/j.scitotenv.2014.05.128 PMid:24937492##.

  • 25.

    Cheng D, Ngo H, Guo W, Liu Y, Zhou J, Chang S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci Total Environ 2018; 621: 1664-1682. https://doi.org/10.1016/j.scitotenv.2017.10.059 PMid:29074241##.

  • 26.

    Marti EJ, Batista JR. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge. Sci Total Environ 2014; 470: 1056-1067. https://doi.org/10.1016/j.scitotenv.2013.10.070 PMid:24239827##.

  • 27.

    Thurman E, Mills M. Solid-phase extraction. New York: John Wiley & Sons 1998; 29: 35-73.##.

  • 28.

    Tang S, Zhang H, Lee HK. Advances in sample extraction. Analyt Chem 2016; 88: 228-249. https://doi.org/10.1021/acs.analchem.5b04040 PMid:26616153##.

  • 29.

    Beresford N, Baynes A, Kanda R, Mills MR, Arias-Salazar K, Collins TJ, et al. Use of a battery of chemical and ecotoxicological methods for the assessment of the efficacy of wastewater treatment processes to remove estrogenic potency. J Visualized Exp 2016; 115: e54243. https://doi.org/10.3791/54243 PMid:27684328 PMCid:PMC5092016##.

  • 30.

    Blair BD, Crago JP, Hedman CJ, Treguer RJ, Magruder C, Royer LS, et al. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci Total Environ 2013; 444: 515-521. https://doi.org/10.1016/j.scitotenv.2012.11.103 PMid:23295178##.

  • 31.

    Li X, Zheng W, Kelly WR. Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons. Sci Total Environ 2013; 445: 22-28. https://doi.org/10.1016/j.scitotenv.2012.12.035 PMid:23314119##.

  • 32.

    Avberek M, men J, Heath E. Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant. J Environ Monitor 2011; 13: 2221-2226. https://doi.org/10.1039/c1em10147a PMid:21727965##.

  • 33.

    Zhang K, Fent K. Determination of two progestin metabolites (17-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Sci Total Environ 2018; 610: 1164-1172. https://doi.org/10.1016/j.scitotenv.2017.08.114 PMid:28847137##.

  • 34.

    Houtman CJ, Ten Broek R, Brouwer A. Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQ-MS. Sci Total Environ 2018; 630: 1492-1501. https://doi.org/10.1016/j.scitotenv.2018.02.273 PMid:29554767##.

  • 35.

    Lima DL, Silva CP, Schneider RJ, Otero M, Esteves VI. Application of dispersive liquid-liquid microextraction for estrogens quantification by enzyme-linked immunosorbent assay. Talanta 2014; 125: 102-106. https://doi.org/10.1016/j.talanta.2014.02.069 PMid:24840421##.

  • 36.

    Esperanza M, Suidan MT, Marfil-Vega R, Gonzalez C, Sorial GA, McCauley P, et al. Fate of sex hormones in two pilot-scale municipal wastewater treatment plants: Conventional treatment. Chemosphere 2007; 66: 1535-1544. https://doi.org/10.1016/j.chemosphere.2006.08.020 PMid:17083962##.

  • 37.

    Servos M, Bennie D, Burnison B, Jurkovic A, McInnis R, Neheli T, et al. Distribution of estrogens, 17-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 2005; 336: 155-170. https://doi.org/10.1016/j.scitotenv.2004.05.025 PMid:15589256##.

  • 38.

    Mina O, Gall HE, Elliott HA, Watson JE, Mashtare ML, Langkilde T, et al. Estrogen occurrence and persistence in vernal pools impacted by wastewater irrigation practices. Agricul Ecosyst Environ 2018; 257: 103-112. https://doi.org/10.1016/j.agee.2018.01.022.