Significance of exosomes in COVID-19 pathogenesis and therapy

authors:

avatar Parviz Basiri , avatar Mohammad Hasan Soheilifar ORCID , * , avatar sima nobari , avatar Amir Hasan Nikfarjam , avatar Hoda Keshmiri Neghab ORCID , avatar Saeid Afshar ORCID , avatar Shima Ghorbanifar , avatar Ali Mahdavinezhad , **

Corresponding Authors:

how to cite: Basiri P , Soheilifar M H, nobari S, Nikfarjam A H, Keshmiri Neghab H, et al. Significance of exosomes in COVID-19 pathogenesis and therapy. koomesh. 2021;23(6):e153300. 

Abstract

Exosomes are lipid bilayer-enclosed nano-sized vesicles, which carry various biomolecules including proteins, lipids, and microRNAs. SARS-CoV-2-loaded exosomes can be entered into the susceptible host cells, and transported viral components which are associated with viral particles intercellular transmission and spread of infection. Over-stimulation of the immune system followed by excessive proinflammatory cytokine production is a hallmark of COVID-19. Mesenchymal stem cell-derived exosomes are a potential therapeutic option in COVID-19 due to their ability to decrease cytokine storm, improve tissue regeneration, and prevent multi-organs failure. Unraveling the exact role of exosomes underlying COVID-19 infection will be beneficial in understanding novel aspects of COVID-19 pathogenesis and therapy. This study aimed to investigate the importance of exosomes in COVID-19

References

  • 1.

    Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2020; 19: 141-154.https://doi.org/10.1038/s41579-020-00459-7 PMid:33024307 PMCid:PMC7537588.

  • 2.

    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England) 2020; 395: 1033. https://doi.org/10.1016/S0140-6736(20)30628-0.

  • 3.

    Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. Jama 2020; 323: 1239-1242. https://doi.org/10.1001/jama.2020.2648 PMid:32091533.

  • 4.

    Li N, Wang X, Lv T. Prolonged SARSCoV2 RNA shedding: Not a rare phenomenon. J Medical Virol 2020. https://doi.org/10.1002/jmv.25952 PMid:32347980 PMCid:PMC7267144.

  • 5.

    Xiao AT, Tong YM, Zhang S. Falsenegative of RTPCR and prolonged nucleic acid conversion in COVID19: rather than recurrence. J Med Virol 2020. https://doi.org/10.1002/jmv.25855 PMid:32270882 PMCid:PMC7262304.

  • 6.

    Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 1-27. https://doi.org/10.1080/07391102.2020.1756409 PMid:32351170.

  • 7.

    Pocsfalvi G, Mammadova R, Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay. Kidney Blood Press Res 2020; 45: 661-670. https://doi.org/10.1159/000511402 PMid:32957112 PMCid:PMC7573892.

  • 8.

    Zhang B, Yeo RW, Lai RC, Sim EW, Chin KC, Lim SK. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 2018; 20: 687-696. https://doi.org/10.1016/j.jcyt.2018.02.372 PMid:29622483.

  • 9.

    Statello L, Maugeri M, Garre E, Nawaz M, Wahlgren J, Papadimitriou A, et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PloS One 2018; 13: e0195969. https://doi.org/10.1371/journal.pone.0195969 PMid:29689087 PMCid:PMC5918169.

  • 10.

    Giannessi F, Aiello A, Franchi F, Percario ZA, Affabris E. The role of extracellular vesicles as allies of HIV, HCV and SARS viruses. Viruses 2020; 12: 571. https://doi.org/10.3390/v12050571 PMid:32456011 PMCid:PMC7291340.

  • 11.

    Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Stat Pearls 2020.

  • 12.

    Jabbari N, Karimipour M, Khaksar M, Akbariazar E, Heidarzadeh M, Mojarad B, et al. Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 2020; 35: 531-545. https://doi.org/10.1007/s10103-019-02880-8 PMid:31529349.

  • 13.

    Blanchard E, Roingeard P. Virusinduced doublemembrane vesicles. Cell Microbiol 2015; 17: 45-50. https://doi.org/10.1111/cmi.12372 PMid:25287059 PMCid:PMC5640787.

  • 14.

    Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, et al. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 2013; 10: 1333-1344. https://doi.org/10.4161/rna.25281 PMid:23807490 PMCid:PMC3817155.

  • 15.

    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R. et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32: 2003-2014. https://doi.org/10.1007/s11095-014-1593-y PMid:25609010 PMCid:PMC4520542.

  • 16.

    Andaloussi SE, Lakhal S, Mger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65: 391-397. https://doi.org/10.1016/j.addr.2012.08.008 PMid:22921840.

  • 17.

    Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018; 2018. https://doi.org/10.1155/2018/3057624 PMid:30013600 PMCid:PMC6022321.

  • 18.

    Kuate S, Cinatl J, Doerr HW, berla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology 2007; 362: 26-37. https://doi.org/10.1016/j.virol.2006.12.011 PMid:17258782 PMCid:PMC7103344.

  • 19.

    Huang-Doran I, Zhang CY, Vidal-Puig A. Vidal-Puig, Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017; 28: 3-18. https://doi.org/10.1016/j.tem.2016.10.003 PMid:27810172.

  • 20.

    Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 2019; 9: 1015-1028. https://doi.org/10.7150/thno.30853 PMid:30867813 PMCid:PMC6401399.

  • 21.

    Mack M, Kleinschmidt A, Brhl H, Klier C, Nelson PJ, Cihak J, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 2000; 6: 769-775. https://doi.org/10.1038/77498 PMid:10888925.

  • 22.

    Meckes DG. Exosomal communication goes viral. J Virol 2015; 89: 5200-5203. https://doi.org/10.1128/JVI.02470-14 PMid:25740980 PMCid:PMC4442506.

  • 23.

    Knoops K, Brcena M, Limpens RW, Koster AJ, Mommaas AM, Snijder EJ. Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J Virol 2012; 86: 2474-2487. https://doi.org/10.1128/JVI.06677-11 PMid:22190716 PMCid:PMC3302280.

  • 24.

    Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, Van Der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006; 80: 5927-5940. https://doi.org/10.1128/JVI.02501-05 PMid:16731931 PMCid:PMC1472606.

  • 25.

    Zeng Z, Xu L, Xie XY, Yan HL, Xie BJ, Xu WZ, et al. Pulmonary pathology of earlyphase COVID19 pneumonia in a patient with a benign lung lesion. Histopathology 2020; 77: 823-831. https://doi.org/10.1111/his.14138 PMid:32374419 PMCid:PMC7267508.

  • 26.

    Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 2020; 20: 1135-1140. https://doi.org/10.1016/S1473-3099(20)30434-5.

  • 27.

    Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015; 16: 24-43. https://doi.org/10.15252/embr.201439363 PMid:25488940 PMCid:PMC4304727.

  • 28.

    MorielCarretero M. The hypothetical role of Phosphatidic Acid in subverting ER membranes during SARSCoV infection. Traffic 2020; 21: 545-551. https://doi.org/10.1111/tra.12738 PMid:32424954 PMCid:PMC7276787.

  • 29.

    Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2020; 1-12. https://doi.org/10.1080/07391102.2020.1790426 PMid:32643586 PMCid:PMC7441802.

  • 30.

    Oudshoorn D, Rijs K, Limpens RW, Groen K, Koster AJ, Snijder EJ, et al. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio 2017; 8: e01658-01717. https://doi.org/10.1128/mBio.01658-17 PMid:29162711 PMCid:PMC5698553.

  • 31.

    Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, Sarna M, Pyrc K. Early events during human coronavirus OC43 entry to the cell. Sci Rep 2018; 8: 1-12. https://doi.org/10.1038/s41598-018-25640-0 PMid:29740099 PMCid:PMC5940804.

  • 32.

    Farkash EA, Wilson AM, Jentzen JM. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol 2020; 31: 1683-1687. https://doi.org/10.1681/ASN.2020040432 PMid:32371536 PMCid:PMC7460898.

  • 33.

    Mnkemller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig 2020; 112: 383-388. https://doi.org/10.17235/reed.2020.7137/2020 PMid:32343593.

  • 34.

    Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395: 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5.

  • 35.

    Kwon Y, Nukala SB, Srivastava S, Miyamoto H, Ismail NI, Ong SB, et al. Exosomes facilitate transmission of SARS-CoV-2 Genome into human induced pluripotent stem cell-derived cardiomyocytes. BioRxiv 2020.

  • 36.

    Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98: 219-227. https://doi.org/10.1016/j.kint.2020.04.003 PMid:32327202 PMCid:PMC7194105.

  • 37.

    Leung WK, To KF, Chan PK, Chan HL, Wu AK, Lee N, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003; 125: 1011-1017. https://doi.org/10.1016/j.gastro.2003.08.001 https://doi.org/10.1016/S0016-5085(03)01215-0.

  • 38.

    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2001017 PMid:31978945 PMCid:PMC7092803.

  • 39.

    West NR. Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front Immunol 2019; 10: 1093-1093. https://doi.org/10.3389/fimmu.2019.01093 PMid:31156640 PMCid:PMC6529849.

  • 40.

    Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol 2020; 5. https://doi.org/10.1126/sciimmunol.abd1554 PMid:32651212 PMCid:PMC7402635.

  • 41.

    Arunachalam PS, Wimmers F, Mok CK, Perera RA, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020; 369: 1210-1220. https://doi.org/10.1126/science.abc6261 PMid:32788292 PMCid:PMC7665312.

  • 42.

    Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23: 40-49. https://doi.org/10.1016/j.prrv.2017.03.012 PMid:28416135 PMCid:PMC5509466.

  • 43.

    Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol 2013; 182: 1552-1562. https://doi.org/10.1016/j.ajpath.2013.01.035 PMid:23499464 PMCid:PMC3644720.

  • 44.

    Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophagederived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32: 5174-5185. https://doi.org/10.1096/fj.201701558R PMid:29672222 PMCid:PMC6103174.

  • 45.

    Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7: e438. https://doi.org/10.1016/S2352-3026(20)30145-9.

  • 46.

    Escher R, Breakey N, Lmmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62. https://doi.org/10.1016/j.thromres.2020.04.014 PMid:32305740 PMCid:PMC7156948.

  • 47.

    Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID19. J Thromb Haemost 2020; 18: 2103-2109. https://doi.org/10.1111/jth.14975 PMid:32558075 PMCid:PMC7323352.

  • 48.

    Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation 2020; 141: 1648-1655. https://doi.org/10.1161/CIRCULATIONAHA.120.046941 PMid:32200663.

  • 49.

    Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int 2020; 98: 228-231. https://doi.org/10.1016/j.kint.2020.04.006 PMid:32471639 PMCid:PMC7156952.

  • 50.

    Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol 2020; 104422. https://doi.org/10.1016/j.meegid.2020.104422 PMid:32544615 PMCid:PMC7293471.

  • 51.

    Hoffmann M, Kleine-Weber H, Krger N, Mller M, Drosten C, Phlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv 2020. https://doi.org/10.1101/2020.01.31.929042.

  • 52.

    Earnest JT, Hantak MP, Li K, McCray Jr PB, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog 2017; 13: e1006546. https://doi.org/10.1371/journal.ppat.1006546 PMid:28759649 PMCid:PMC5552337.

  • 53.

    Gunasekaran M, Bansal S, Ravichandran R, Sharma M, Perincheri S, Rodriguez F, et al. Respiratory viral infection in lung transplantation induces exosomes that trigger chronic rejection. J Heart Lung Transplant 2020; 39: 379-388. https://doi.org/10.1016/j.healun.2019.12.009 PMid:32033844 PMCid:PMC7102671.

  • 54.

    Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2020; 10. https://doi.org/10.1016/j.jmii.2020.03.022 PMid:32265180 PMCid:PMC7138183.

  • 55.

    Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2021; 39: 3034-3060. https://doi.org/10.1080/07391102.2020.1756409 PMid:32351170.

  • 56.

    Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 2006; 103: 738-743. https://doi.org/10.1073/pnas.0507995103 PMid:16407131 PMCid:PMC1334656.

  • 57.

    Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367. https://doi.org/10.1126/science.aau6977 PMid:32029601 PMCid:PMC7717626.

  • 58.

    Yuan J, Kou S, Liang Y, Zeng J, Pan Y, Liu L. PCR assays turned positive in 25 discharged COVID-19 patients. Clin Infect Dis 2020.

  • 59.

    Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2021; 39: 5831-5842. https://doi.org/10.1080/07391102.2020.1790426 PMid:32643586 PMCid:PMC7441802.

  • 60.

    Ye G, Pan Z, Pan Y, Deng Q, Chen L, Li J, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect 2020; 80: e14-e17. https://doi.org/10.1016/j.jinf.2020.03.001 PMid:32171867 PMCid:PMC7102560.

  • 61.

    Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front Immunol 2018; 9: 433. https://doi.org/10.3389/fimmu.2018.00433 PMid:29559974 PMCid:PMC5845630.

  • 62.

    Guterres A, de Azeredo Lima CH, Miranda RL, Gadelha MR. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Genet Evol 2020; 85: 104417. https://doi.org/10.1016/j.meegid.2020.104417 PMid:32526370 PMCid:PMC7833518.

  • 63.

    Chahar HS, Bao X, Casola A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 2015; 7: 3204-3225. https://doi.org/10.3390/v7062770 PMid:26102580 PMCid:PMC4488737.

  • 64.

    Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z, et al. Exosomal miRNAs: Novel players in viral infection. Epigenomics 2020; 12: 353-370. https://doi.org/10.2217/epi-2019-0192 PMid:32093516 PMCid:PMC7713899.

  • 65.

    Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 2010; 107: 20370-20375. https://doi.org/10.1073/pnas.1014194107 PMid:21059916 PMCid:PMC2996715.

  • 66.

    Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep 2018; 8: 1-18. https://doi.org/10.1038/s41598-017-18672-5 PMid:29321591 PMCid:PMC5762922.

  • 67.

    Soheilifar MH, Keshmiri Neghab H, Basiri P. Biological impacts of MicroRNAs in Covid-19: implications for anti-viral miRNA-Based therapies. Arch Clin Infect Dis 2020; 15: e104140. https://doi.org/10.5812/archcid.104140.

  • 68.

    Widiasta A, Sribudiani Y, Nugrahapraja H, Hilmanto D, Sekarwana N, Rachmadi D. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res 2020; 5: 153-166. https://doi.org/10.1016/j.ncrna.2020.09.001 PMid:32923747 PMCid:PMC7480227.

  • 69.

    Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 2019; 4: 1-12. https://doi.org/10.1038/s41392-019-0080-7 PMid:31728212 PMCid:PMC6851157.

  • 70.

    Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med 2016; 5: 1190-1203. https://doi.org/10.5966/sctm.2015-0348 PMid:27496568 PMCid:PMC4996444.

  • 71.

    Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018; 9: 1-13. https://doi.org/10.1186/s13287-018-0774-8 PMid:29378639 PMCid:PMC5789598.

  • 72.

    Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi S, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen 2020; 40: 1-6. https://doi.org/10.1186/s41232-020-00121-y PMid:32582401 PMCid:PMC7306412.

  • 73.

    Brger V, Weiss DJ, Anderson JD, Borrs FE, Bussolati B, Carter DR, et al. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy 2020; 22: 482-485. https://doi.org/10.1016/j.jcyt.2020.05.002 PMid:32425691 PMCid:PMC7229942.

  • 74.

    Soni S, Wilson MR, O'Dea KP, Yoshida M, Katbeh U, Woods SJ, Takata M. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax 2016; 71: 1020-1029. https://doi.org/10.1136/thoraxjnl-2015-208032 PMid:27287089 PMCid:PMC5099194.

  • 75.

    Jones LB, Bell CR, Bibb KE, Gu L, Coats MT, Matthews QL. Pathogens and their effect on exosome biogenesis and composition. Biomedicines 2018; 6: 79. https://doi.org/10.3390/biomedicines6030079 PMid:30041409 PMCid:PMC6164629.

  • 76.

    Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol 2016; 9: S39925. https://doi.org/10.4137/CPath.S39925 PMid:27660518 PMCid:PMC5024790.

  • 77.

    Qazi KR, Gehrmann U, Domange Jord E, Karlsson MC, Gabrielsson S. Antigen-loaded exosomes alone induce Th1-type memory through a B cell-dependent mechanism. Blood 2009; 113: 2673-2683. https://doi.org/10.1182/blood-2008-04-153536 PMid:19176319.

  • 78.

    Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29: 747-754. https://doi.org/10.1089/scd.2020.0095 https://doi.org/10.1089/scd.2020.0080 PMid:32380908 PMCid:PMC7310206.

  • 79.

    Alzahrani FA, Saadeldin IM, Ahmad A, Kumar D, Azhar EI, Siddiqui AJ, et al. The potential use of mesenchymal stem cells and their derived exosomes as immunomodulatory agents for COVID-19 patients. Stem Cells Int 2020; 2020. https://doi.org/10.1155/2020/8835986 PMid:33014070 PMCid:PMC7512102.

  • 80.

    Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12: 814. https://doi.org/10.4252/wjsc.v12.i8.814 PMid:32952861 PMCid:PMC7477653.

  • 81.

    Cruz FF, Rocco PR. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4. https://doi.org/10.21037/sci.2017.09.02 PMid:29057250 PMCid:PMC5639023.

  • 82.

    Pocsfalvi G, Mammadova R, Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and Extracellular Vesicles: An Intriguing Interplay. Kidney Blood Press Res 2020; 1-10. https://doi.org/10.1159/000511402 PMid:32957112 PMCid:PMC7573892.

  • 83.

    Yahaya BH. ID2008 Aerosol-based cell delivery as an innovative treatment for lung diseases. Biomed Res Ther 2017; 4: S41-S41. https://doi.org/10.15419/bmrat.v4iS.251.

  • 84.

    Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9: 187. https://doi.org/10.1186/s13287-018-0939-5 PMid:29996938 PMCid:PMC6042362.

  • 85.

    Choudhery MS, Harris DT. Stem cell therapy for COVID19: Possibilities and challenges. Cell Biol Int 2020; 44: 2182-2191. https://doi.org/10.1002/cbin.11440 PMid:32767687 PMCid:PMC7436138.

  • 86.

    Li Y, Xu J, Shi W, Chen C, Shao Y, Zhu L, et al. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther 2016; 7: 159. https://doi.org/10.1186/s13287-016-0395-z PMid:27793190 PMCid:PMC5084318.

  • 87.

    Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 2018; 363: 114-120. https://doi.org/10.1016/j.yexcr.2017.12.021 PMid:29277503.

  • 88.

    Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017; 27: 172-188. https://doi.org/10.1016/j.tcb.2016.11.003 PMid:27979573 PMCid:PMC5318253.

  • 89.

    Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M. et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 2014; 15: 39. https://doi.org/10.1186/1465-9921-15-39 PMid:24708472 PMCid:PMC3994204.

  • 90.

    Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70. https://doi.org/10.1016/j.cytogfr.2020.05.002 PMid:32418715 PMCid:PMC7204669.

  • 91.

    Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11: 216. https://doi.org/10.14336/AD.2020.0228 PMid:32257537 PMCid:PMC7069465.

  • 92.

    Yin G, Zhang C, Jin H. Current status on clinical trials and treatments for COVID-19.