CRISPR/Cas9-based systems: taking recombineering to the next level

authors:

avatar Sina Adrangi

Warning: No corresponding author defined!

how to cite: Adrangi S. CRISPR/Cas9-based systems: taking recombineering to the next level. Iran J Pharm Res. 2016;15(4):e125225. https://doi.org/10.22037/ijpr.2016.1982.

References

  • 1.

    Boyd D, Weiss DS, Chen JC, Beckwith J. Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J. Bacteriol. 2000;182:842-847. [PubMed ID: 10633125].

  • 2.

    Santos CN, Regitsky DD, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat. Commun. 2013;4:2503. [PubMed ID: 24056574].

  • 3.

    Peredelchuk MY, Bennett GN. A method for construction of E coli strains with multiple DNA insertions in the chromosome. Gene. 1997;187:231-238. [PubMed ID: 9099886].

  • 4.

    Mairhofer J, Scharl T, Marisch K, Cserjan-Puschmann M, Striedner G. Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl. Environ. Microbiol. 2013;79:3802-3812. [PubMed ID: 23584782].

  • 5.

    Huang LC, Wood EA, Cox MM. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system. J. Bacteriol. 1997;179:6076-6083. [PubMed ID: 9324255].

  • 6.

    Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli. Gene. 1991;107:11-17. [PubMed ID: 1660428].

  • 7.

    Kuhlman TE, Cox EC. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res. 2010;38:e92-e92. [PubMed ID: 20047970].

  • 8.

    Link AJ, Phillips D, Church GM. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 1997;179:6228-6237. [PubMed ID: 9335267].

  • 9.

    Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 2000;97:5978-5983. [PubMed ID: 10811905].

  • 10.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816-821. [PubMed ID: 22745249].

  • 11.

    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. CRISPR-assisted editing of bacterial genomes. Nat. Biotechnol. 2013;31:233-239. [PubMed ID: 23360965].

  • 12.

    Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 2015;81:5103-5114. [PubMed ID: 26002895].

  • 13.

    Bassalo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, Arkin AP, Gill RT. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth. Biol. 2016;5:561-568. [PubMed ID: 27072506].