Evaluating the Impact of Total Resistance Exercise (TRX) System on Female Students and Their Static Balance

authors:

avatar Mehran Shahraki ORCID 1 , avatar Somayeh Joupari Nejad ORCID 2 , avatar Fatemeh Jafari 3 , avatar Taiebeh Tavakoli Hafshejani ORCID 4 , avatar Mehri Safari ORCID 5 , avatar Mohsen Saeedi Abo-s-Haghi ORCID 4 , avatar Fateme Haseli ORCID 6 , avatar Nafiseh Hekmati Pour ORCID 3 , *

Department of Nursing, Zahedan Branch, Islamic Azad University, Zahedan, Iran
Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
Department of Nursing, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Shahrekord University of Medical Sciences, Shahrekord, Iran
Asadabad School of Medical Sciences, Asadabad, Iran
Deputy of Treatment and Rehabilitation, Iranian Red Crescent Society, Tehran, Iran

how to cite: Shahraki M, Joupari Nejad S, Jafari F, Tavakoli Hafshejani T, Safari M, et al. Evaluating the Impact of Total Resistance Exercise (TRX) System on Female Students and Their Static Balance. J Health Rep Technol. 2023;9(4):e141916. https://doi.org/10.5812/jhrt-141916.

Abstract

Background:

Physical inactivity during adolescence can result in an unfavorable consequence of imbalance. Total resistance exercise (TRX) muscle resistance exercise increases static balance and prevents muscle injuries in female students by strengthening body muscles.

Objectives:

This study aimed to evaluate the impact of total body muscular resistance training on the static balance of female student cohorts.

Methods:

This experimental study was conducted on 50 female students aged 12 - 15 who resided in Gorgan, Iran. The data collection tool was the stork's static balance test. The intervention group received ten training sessions (45 - 60 minutes) over ten weeks, but the control group received the routine school exercises. The collected data were subjected to statistical analysis using SPSS-21 software, wherein descriptive and inferential statistics, including paired t-test, independent t-test, and ANCOVA, were employed at a significance level of 0.05.

Results:

ANCOVA analysis, after eliminating the pre-test influence, indicated that the intervention group significantly improved the static balance of both the right (Eta = 0.57, P < 0.01) and left leg (Eta = 0.46, P < 0.01), after total body muscle resistance exercise (TRX) intervention.

Conclusions:

Based on the results, engagement in muscular can augment muscle strength and preserve the body's equilibrium. Therefore, managers and health professionals should use this inexpensive, applicable, and safe exercise method to increase physical fitness and prevent musculoskeletal injuries among students.

1. Background

The level of inactivity among adolescents has increased in the past few decades due to the industrialization of societies, lifestyle changes, the rapid growth of communication technologies, the attractiveness and increase of television programs, and the excessive use of computer games (1-3). Today, there is a lack of physical activity in children and adolescents (4). A majority of adolescents between the ages of 11 and 17 years, approximately 80%, are insufficiently active physically, as per the report published by the World Health Organization (WHO) (5). Most related research has suggested that the physical activity levels among adolescents fall below the recommended benchmark set by WHO, which is about one hour of moderate-intensity physical activity per day (5). Engagement in physical activities during childhood is significant in fostering better health outcomes during adulthood (6).

Being physically inactive can reduce muscle strength, which is associated with various movement disorders and abnormalities of the skeletal muscles, particularly in adolescent females (7, 8). Adolescent females frequently experience several issues, including weakened trunk muscles, diminished strength in the skeletal muscles, and a higher incidence of conditions such as lordosis and kyphosis (8, 9). Most spinal abnormalities result in decreased balance and compromised motor function, culminating in back pain during the adolescent and adult stages of life (10). Inactivity during adolescence can lead to imbalance as a well-known adverse effect (11). Therefore, balance is considered a necessary and safe activity in daily life (12). Balance is regarded as an essential activity for life (13). The balance in movement activities is classified into static and dynamic (14). Static balance is maintaining a stable body position while sitting or standing on a fixed platform (12). The ability of the body to maintain body movement is called dynamic balance (15). The performance of the central muscles in the body is significantly influenced by static balance (16). Enhancing and sustaining static balance can be crucial in students' walking abilities and balance preservation as they become mature adults (17, 18). Physical exercises in adolescence strengthen muscle strength and balance the body (19).

Muscle resistance exercise, specifically total resistance exercise (TRX), is a type of training method suitable for individuals of all ages (20, 21). Total resistance exercise is a floating exercise by a rope, which can be performed in a small and limited space. One of the distinguishing features of TRX is that it involves exercises that target the muscles and joints at every level of the body (22, 23).

Total resistance exercise is known to effectively enhance the vertebral column's stability, restore the joints' deep sensation, strengthen the lumbar region's muscles, and promote balance throughout the body (24, 25). Muscle resistance exercises strengthen leg tendons and maintain body balance (26). Strength training significantly affects the establishment of balance by strengthening ligaments and joint stability and stimulating proprioception (27-30), increasing muscle strength, reducing the possibility of osteoporosis, and improving balance in adolescence, adulthood, and old age (31). Therefore, the TRX exercise can be a simple, low-risk, and applicable training technique (20).

2. Objectives

Based on previous studies and the practicality of this particular exercise method, this study aimed to evaluate the impact of TRX on the static balance of female students.

3. Methods

An experimental study, adhering to classic methodology, was performed in 2022 in Gorgan, Golestan province, Iran, on 50 female students between 12 and 15 years old. This research was conducted in female secondary schools in Gorgan. The inclusion criteria were limited to female students between 12 and 15 years old with no congenital musculoskeletal or physical conditions, as determined via their health records and self-reported data. The exclusion criteria included a lack of consent by parents or students to participate and missing more than two exercise sessions during the training period. The research environment was women's sports clubs and secondary schools of Gorgan. The sample size was determined as much as 50 individuals, according to Okhli et al. (8), using the G*Power software. An effect size of 0.72, test power of 80%, and confidence interval of 95% were applied in the calculations. A significance level of 0.05 was utilized for all testing purposes.

Initially, the researcher compiled a roster of secondary schools catering to female students aged 12 - 15 in Gorgan. Subsequently, a simple randomization technique was employed, and two schools were chosen as the setting for the study. In addition, the researcher identified a group of students deemed eligible for study participation. Then, a convenience sampling method was utilized to select 50 students who fulfilled the inclusion criteria. Then, these 50 students were randomly divided into two intervention and control groups (25 people for each group).

Students and their parents were thoroughly informed about the study's objectives and methodology, and the researcher secured their informed consent while guaranteeing the data safety, anonymity, and confidentiality. The researcher further told all participants in the survey that they had the option to withdraw from the study at any given time. The control group underwent the school's customary exercise program, which the school's sports coach oversaw. Meanwhile, the intervention group completed ten resistance exercise sessions, each lasting 45 to 60 minutes, over ten weeks (two sessions per week). The exercises were conducted with the guidance of a sports coach, and their design was informed by relevant scientific literature and specialized books on sports science. The exercises from previous sessions were incorporated and revisited during each session (Table 1).

Table 1.

Total Resistance Exercise, Exercises as the Correct Way to Perform Each Movement, and the Muscles Involved

TRX ExerciseDescriptionInvolved Muscles
Chest pressTake hold of the TRX handles and position the body accordingly. Proceed to bend the elbows, ensuring they remain parallel to the chest, before returning the body to its initial position by extending the triceps while opening the elbows.Triceps brachii, deltoid, and large chest
Suspended lounge (both legs)Place one leg into both handles, securing the foot in place. Step away from the center of the device before softly bending the knee to support the body's weight. The foot should be positioned in front of the knee. Finally, return the knee to its initial position.Quadriceps, hamstring, serine
Rowing, both handsRotate the body towards the device and grasp the handles, positioning them near one another. Ensure that the entire body is aligned in a straight line. Proceed to elevate the body until it reaches chest level before returning it to its initial position.Trapezius, large dorsal, and deltoid
ScottHold both handles of the device while standing in front of it. Proceed to bend the knees, ensuring they are situated behind the feet until the thighs parallel the ground. The arms should only be used to maintain balance. Finally, return the body to its initial position.Quadriceps, hamstring, serine
YTW with ropeAssume standing while facing the device, ensuring a secure grip on both handles. Three distinct circular movements should be performed with the hands, with the body returning to its original position after each circular movement. Gradually rotate the body and raise hands to form a Y-shape above the head before lowering them to either side to create a fully extended T-shape. Finally, bring the arms to a lower position and adjacent to the thighs, resulting in a W-shape.Deltoid, trapezius, and rhomboid muscles
Romanian deadlift (both legs)Place a foot into both handles and away from the device's center. The lower back should be straight, and the involved leg should be slightly bent to hip level when bending over and lowering the upper body. Finally, return the body to its initial position.Hamstring and serine
TricepsOrient the body with its back towards the center of the device. Grasp both handles with fully extended arms positioned above the head. The body and elbows should be aligned in the same direction, with elbows at the shoulders. Proceed to bend the elbows to form a 90-degree angle before returning to the initial position with fully extended arms.Triceps
HamstringAssume a supine position on the floor. Position the heels of both feet into the handles so that the back of the foot is in contact. Proceed to pull the heels towards the hips, creating a bridge-like position, and maintain this stance. During this process, execute the movement from the inside to the outside.Hamstring
Plank (flat)Rest the elbows on the floor to provide support, and lie on the back. Maintain this position continuously.Rectus abdominis, transversus abdominis, side and loin muscles
Isometric side hold with Palov press and rubber bandStand adjacent to the device to ensure the two handles are positioned at chest level. Angle the body accordingly. Proceed to elevate and lower the elastic bands using the hands, resulting in a corresponding body movement up and down.Side, square lumbar muscle

The static balance of participants was evaluated using the Stork Test, which involves the subject standing barefoot on a flat surface with their hands on their hips. The individual then positions their non-supporting leg close to the knee of their supporting leg while maintaining this fixed stance. The duration for which the subject can sustain this posture is regarded as the score for the Stork Test. Any error made during the test results in the timer being stopped. Examples of errors during the test include touching the ground using the heel of the non-supporting leg, disconnecting the non-supporting leg from the knee, swinging the non-supporting leg in any direction, and lifting the hand from the hip (22, 32). Two people observed and recorded the data of intervention and control groups. Female control group students who expressed interest in TRX exercises after this study were given the same exercises as those in the intervention group. The collected data were analyzed by SPSS software version 21.

4. Results

The average age of participants in the intervention group was 13.92 ± 0.81 years, while 14.08 ± 0.81 years in the control group, with corresponding standard deviations. Based on the independent t-test, there was no significant difference between the two groups regarding age (P = 0.49). The average weight of students in the intervention group was 36.64 ± 6.5 kg, while 38.6 ± 6.49 kg for those in the control group, with corresponding standard deviations. Based on the independent t-test, the two groups were not significantly different in weight (P = 0.32). The average height of students in the intervention group was 158.8 ± 5.3 cm, while 160 ± 6.52 cm for those in the control group, with corresponding standard deviations. The independent t-test revealed no significant difference between the studied groups regarding their height (P = 0.49).

The paired t-test on the control group before and after the intervention indicated no significant difference in terms of the static balance of the left leg (P = 0.56) and the static balance of the right leg (P = 0.19). The paired t-test on the intervention group before and after the intervention demonstrated a significant difference in both the static balance of the left (P < 0.01) and right leg (P < 0.01).

Furthermore, the independent t-test indicated no significant difference between the two groups before the intervention, the static balance of the right (P = 0.13) and left leg (P = 0.26). However, a significant difference was observed in the static balance of the right (P < 0.01) and left leg (P < 0.01) between the two groups (Table 2).

Table 2.

The Static Balance of Students in Both the Intervention and Control Groups Before and After the Intervention

VariablesBefore InterventionAfter Intervention
Right LegLeft LegRight LegLeft Leg
Control13.04 ± 3.1812.72 ± 2.1512.36 ± 2.4613.01 ± 1.93
Intervention14.26 ± 1.5213.46 ± 1.8217.32 ± 1.8217.01 ± 9.08
P-value0.130.26 < 0.01 < 0.01

The ANCOVA test demonstrated that the TRX had a significant impact on enhancing the static balance of the right leg by eliminating the influence of the pre-test, as evidenced by a large effect size (Eta = 0.57) and significant result (P < 0.01) (Table 3).

Table 3.

The Effect of Total Resistance Exercise, Exercise on the Static Balance of the Right Leg

Source of VarianceSum of SquaresDegree of FreedomMean of SquaresF-ValueSignificance LevelEta
Modified model367.232183.6150.92 < 0.010.68
Post-test separator117.81159.7132.67 < 0.010.26
Group227.841227.8463.18 < 0.010.57
Error169.49473.6
Sum1154850
Total536.7249

The ANCOVA test, which accounted for the pre-test effect, demonstrated that the TRX effectively improved the static balance of the left leg. This conclusion was supported by a significant result (P < 0.01) and a moderate effect size (Eta = 0.46) (Table 4).

Table 4.

The Impact of Total Resistance Exercise, Exercise on the Static Balance of the Left Leg

Source of VarianceSum of SquaresDegree of FreedomMean of SquaresF-ValueSignificance LevelEta
Modified model230.752115.2730.59 < 0.010.59
Post-test separator102.921102.9227.29 < 0.010.36
Group176.361156.2641.46 < 0.010.46
Error177.24473.77
Sum1165850
Total40849

5. Discussion

Female students experienced an improvement in their static balance in the left and right legs as a result of engaging in TRX exercises. Sarabon and Kozinc found that muscle resistance exercises increase physical fitness and maintain balance (33). Shahrbanian and Hashemi argued that resistance exercise increases static and dynamic balance by strengthening the body's central muscles and maintaining balance (34). Alizadeh et al. concluded that muscle resistance exercises strengthen the strength of the lower muscles (35). In Assar et al. asserts that TRX training can reinforce and stabilize the central muscles within the body, ultimately leading to an improvement in the lower limb functions and the maintenance of balance (36). Implementing TRX exercises can significantly enhance balance and preserve body composition, given that balance requires both muscular and skeletal strength (37, 38). Strengthening the range of motion of the joint leads to muscle strength and balance in movement (39).

Total rResistance exercise, exercises can augment the duration of static balance while concurrently reducing the duration of dynamic balance in elderly men. This cost-effective exercise regime is deemed a productive exercise (40). Incorporating resistance exercise is essential, as it can effectively enhance the muscular strength within students' upper and lower limbs. Managers and health professionals must use these training methods to prevent girls' spine problems (41). Therefore, balance in the central area of the body can be increased by performing resistance exercises and increasing muscle strength. Since the coordination of trunk and thigh muscles plays a vital role in maintaining the optimal body position (42), resistance exercise increases stamina and balance (43). Resistance exercises cause balance and prevent physical injuries (40). Maintaining balance is an essential factor in preventing injuries (42). Total resistance exercises increase the spine's stability, retrain the sense of proprioception in the lumbopelvic region, and strengthen body muscles (44). Therefore, the utilization of care and rehabilitation models is crucial in elevating individuals’ quality of life and health (45-47).

5.1. Limitations

One of the limitations of this research was the limited hours of the women’s sports club.

5.2. Conclusions

Exercise plays a pivotal role in promoting both mental and physical well-being. Exercise improves interpersonal relationships, stress control, cognitive ability, health, and fitness. Total resistance exercise, exercise strengthens the tendons, hip muscles, and spine. The exercise also increases the range of motion of joints, the density of bones, and the maintenance of balance. The total rResistance exercise, exercise is a straightforward, pragmatic, and feasible approach, so it does not require intricate equipment or facilities. Resistance exercises strengthen muscle strength and balance and prevent physical injuries.

References

  • 1.

    Wang H, Zhang T, Lu M, Zeng Y, Xiao Y, Ren X, et al. Effects of physical activity and counselling interventions on health outcomes among working women in Shanghai. J Sports Sci Med. 2021;20(1):77-85. [PubMed ID: 33707990]. [PubMed Central ID: PMC7919363]. https://doi.org/10.52082/jssm.2021.77.

  • 2.

    Woessner MN, Tacey A, Levinger-Limor A, Parker AG, Levinger P, Levinger I. The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Front Public Health. 2021;9:655491. [PubMed ID: 34123989]. [PubMed Central ID: PMC8193221]. https://doi.org/10.3389/fpubh.2021.655491.

  • 3.

    Sadeghloo A, Shamsaee P, Hesari E, Akhondzadeh G, Hojjati H. The effect of positive thinking training on the quality of life of parents of adolescent with thalassemia. Int J Adolesc Med Health. 2019;34(3). [PubMed ID: 31525156]. https://doi.org/10.1515/ijamh-2019-0159.

  • 4.

    Glinkowska B, Glinkowski WM. Association of sports and physical activity with obesity among teenagers in Poland. Int J Occup Med Environ Health. 2018;31(6):771-82. [PubMed ID: 30484439]. https://doi.org/10.13075/ijomeh.1896.01170.

  • 5.

    Alasqah I, Mahmud I, East L, Alqarawi N, Usher K. Physical inactivity and its predictors among adolescents in Saudi Arabia: A cross-sectional comparison between cities with and without a Healthy Cities Program. Saudi Med J. 2021;42(8):886-94. [PubMed ID: 34344813]. [PubMed Central ID: PMC9195547]. https://doi.org/10.15537/smj.2021.42.8.20210310.

  • 6.

    van Sluijs EMF, Ekelund U, Crochemore-Silva I, Guthold R, Ha A, Lubans D, et al. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet. 2021;398(10298):429-42. [PubMed ID: 34302767]. [PubMed Central ID: PMC7612669]. https://doi.org/10.1016/S0140-6736(21)01259-9.

  • 7.

    Karimizadeh Ardakani M, Mansori MH, Hamzeh Shalamzari MH. [Investigating the relationship between core muscle endurance with movement function and postural control in blind people]. The Scientific Journal of Rehabilitation Medicine. 2020;9(2):148-57. Persian.

  • 8.

    Okhli H, Hojjati H, Akhoundzadeh G. [Comparing the effect of the corrective exercises of America’s National academy of sports medicine and Pilates on the correction of lordosis among female high school students in Golestan Province in 2018]. International J School Health. 2019;6(4):1-6. Persian.

  • 9.

    Jorabian A, Nejad SJ, Jafari F, Latifi N, Shahraki M, Hekmatipour N. [The Effect of Pilates Exercise on the Static Balance of Teenage Female Students]. Int J Med Investigation. 2022;11(4):115-21. Persian.

  • 10.

    Dehghani E, Ghasemi GA, Sadeghi M. Effect of eight-week of Dynamic Neuromuscular Stabilization exercises on the static and dynamic balance in disable people with mental retardation. Scientific J Rehabilitation Med. 2021.

  • 11.

    Wilczynski J, Kasprzak A. Dynamics of Changes in Isometric Strength and Muscle Imbalance in the Treatment of Women with Low back Pain. Biomed Res Int. 2020;2020:6139535. [PubMed ID: 32420354]. [PubMed Central ID: PMC7201447]. https://doi.org/10.1155/2020/6139535.

  • 12.

    Zhu W, Li Y, Wang B, Zhao C, Wu T, Liu T, et al. Objectively measured physical activity is associated with static balance in young adults. Int J Environ Res Public Health. 2021;18(20). [PubMed ID: 34682535]. [PubMed Central ID: PMC8535756]. https://doi.org/10.3390/ijerph182010787.

  • 13.

    Dunsky A. The effect of balance and coordination exercises on quality of life in older Adults: A Mini-Review. Front Aging Neurosci. 2019;11:318. [PubMed ID: 31803048]. [PubMed Central ID: PMC6873344]. https://doi.org/10.3389/fnagi.2019.00318.

  • 14.

    Horstink KA, van der Woude LHV, Hijmans JM. Effects of offloading devices on static and dynamic balance in patients with diabetic peripheral neuropathy: A systematic review. Rev Endocr Metab Disord. 2021;22(2):325-35. [PubMed ID: 33452959]. [PubMed Central ID: PMC8087551]. https://doi.org/10.1007/s11154-020-09619-9.

  • 15.

    Wu H, Wei Y, Miao X, Li X, Feng Y, Yuan Z, et al. Characteristics of balance performance in the Chinese elderly by age and gender. BMC Geriatr. 2021;21(1):596. [PubMed ID: 34696721]. [PubMed Central ID: PMC8543793]. https://doi.org/10.1186/s12877-021-02560-9.

  • 16.

    Amiri B, Sahebozamani M, Sedighi B. The effects of 10-week core stability training on balance in women with multiple sclerosis according to expanded disability status scale: A single-blinded randomized controlled trial. Eur J Phys Rehabil Med. 2019;55(2):199-208. [PubMed ID: 29307152]. https://doi.org/10.23736/S1973-9087.18.04778-0.

  • 17.

    Latorre Roman PA, Mora Lopez D, Robles Fuentes A, Garcia Pinillos F. Reference values of static balance in spanish preschool children. Percept Mot Skills. 2017;124(4):740-53. [PubMed ID: 28490288]. https://doi.org/10.1177/0031512517708528.

  • 18.

    Zarei H, Norasteh AA, Rahmanpournashrudkoli A, Hajihoseini E. The effects of Pilates training on static and dynamic balance of female deaf students: A randomized controlled trial. J Bodywork Movement Therapies. 2020;24(4):63-9. https://doi.org/10.1016/j.jbmt.2020.05.003.

  • 19.

    Xiao S, Wang B, Yu C, Shen B, Zhang X, Ye D, et al. Effects of intervention combining transcranial direct current stimulation and foot core exercise on sensorimotor function in foot and static balance. J Neuroeng Rehabil. 2022;19(1):98. [PubMed ID: 36104787]. [PubMed Central ID: PMC9476283]. https://doi.org/10.1186/s12984-022-01077-5.

  • 20.

    Rahimi M, Nazarali P, Alizadeh R. Pilates and TRX training methods can improve insulin resistance in overweight women by increasing an exercise-hormone, Irisin. J Diabetes Metab Disord. 2021;20(2):1455-60. [PubMed ID: 34900797]. [PubMed Central ID: PMC8630183]. https://doi.org/10.1007/s40200-021-00887-z.

  • 21.

    Samadpour Masouleh S, Bagheri R, Ashtary-Larky D, Cheraghloo N, Wong A, Yousefi Bilesvar O, et al. The Effects of TRX suspension training combined with taurine supplementation on body composition, glycemic and lipid markers in women with type 2 diabetes. Nutrients. 2021;13(11). [PubMed ID: 34836211]. [PubMed Central ID: PMC8621658]. https://doi.org/10.3390/nu13113958.

  • 22.

    Jafari F, sarkoohi Z, Ebrahimpour RM, Firoozi F, seifi Z, Hekmatipour N. [The effect of muscular resistance exercise on the dynamic balance of female students Aged 12-15 Years]. Neuro Quantology. 2022;20(6):7099-105. Persian.

  • 23.

    Jay Dawes DM. Resistance Characteristics of the TRX™ suspension training system at different angles and distances from the hanging point. J Athletic Enhancement. 2015;4(1). https://doi.org/10.4172/2324-9080.1000184.

  • 24.

    Hamed A, Bohm S, Mersmann F, Arampatzis A. Exercises of dynamic stability under unstable conditions increase muscle strength and balance ability in the elderly. Scand J Med Sci Sports. 2018;28(3):961-71. [PubMed ID: 29154407]. https://doi.org/10.1111/sms.13019.

  • 25.

    Lee J, Yu J, Hong J, Lee D, Kim J, Kim S. The effect of augmented reality-based proprioceptive training program on balance, positioning sensation and flexibility in healthy young adults: A randomized controlled trial. Healthcare (Basel). 2022;10(7). [PubMed ID: 35885731]. [PubMed Central ID: PMC9317612]. https://doi.org/10.3390/healthcare10071202.

  • 26.

    Jo SH, Choi HJ, Cho HS, Yoon JH, Lee WY. Effect of core balance training on muscle tone and balance ability in adult men and women. Int J Environ Res Public Health. 2022;19(19). [PubMed ID: 36231489]. [PubMed Central ID: PMC9564429]. https://doi.org/10.3390/ijerph191912190.

  • 27.

    Taghavi Asl A, Shojaedin SS, Hadadnezhad M. Comparison of effect of wobble board training with and without cognitive intervention on balance, ankle proprioception and jump landing kinetic parameters of men with chronic ankle instability: A randomized control trial. BMC Musculoskelet Disord. 2022;23(1):888. [PubMed ID: 36180870]. [PubMed Central ID: PMC9523631]. https://doi.org/10.1186/s12891-022-05706-x.

  • 28.

    Wang B, Zhang X, Zhu F, Zhu W, Wang X, Jia F, et al. A randomized controlled trial comparing rehabilitation with isokinetic exercises and Thera-Band strength training in patients with functional ankle instability. PLoS One. 2022;17(12). e0278284. [PubMed ID: 36454876]. [PubMed Central ID: PMC9714719]. https://doi.org/10.1371/journal.pone.0278284.

  • 29.

    Emery CA, Cassidy JD, Klassen TP, Rosychuk RJ, Rowe BH. Effectiveness of a home-based balance-training program in reducing sports-related injuries among healthy adolescents: A cluster randomized controlled trial. CMAJ. 2005;172(6):749-54. [PubMed ID: 15767608]. [PubMed Central ID: PMC552888]. https://doi.org/10.1503/cmaj.1040805.

  • 30.

    Acar Y, Ilcin N, Gurpinar B, Can G. The effects of clinical pilates training on disease-specific indices, core stability, and balance in patients with ankylosing spondylitis. J Bodyw Mov Ther. 2023;33:69-75. [PubMed ID: 36775528]. https://doi.org/10.1016/j.jbmt.2022.09.010.

  • 31.

    LeBouthillier DM, Asmundson GJG. The efficacy of aerobic exercise and resistance training as transdiagnostic interventions for anxiety-related disorders and constructs: A randomized controlled trial. J Anxiety Disord. 2017;52:43-52. [PubMed ID: 29049901]. https://doi.org/10.1016/j.janxdis.2017.09.005.

  • 32.

    Sedaghati P, Saki F, Sarlak P. [The impact of specific core stability training on the sports performance of teenage competitive swimmers]. J Rafsanjan Univ Med Sci. 2018;17(4):305-18. Persian.

  • 33.

    Sarabon N, Kozinc Z. Effects of resistance exercise on balance ability: Systematic review and meta-analysis of randomized controlled trials. Life (Basel). 2020;10(11). [PubMed ID: 33203156]. [PubMed Central ID: PMC7697352]. https://doi.org/10.3390/life10110284.

  • 34.

    Shahrbanian S, Hashemi A. The effects of core stabilization training on balance and reaction time in children with developmental coordination disorder. Res Sport Management Motor Behav. 2018;8(16):83-91. https://doi.org/10.29252/jrsm.8.16.83.

  • 35.

    Alizadeh S, Daneshjoo A, Zahiri A, Anvar SH, Goudini R, Hicks JP, et al. Resistance training induces improvements in range of motion: A systematic review and meta-analysis. Sports Med. 2023;53(3):707-22. [PubMed ID: 36622555]. [PubMed Central ID: PMC9935664]. https://doi.org/10.1007/s40279-022-01804-x.

  • 36.

    Assar S, Gandomi F, Mozafari M, Sohaili F. The effect of total resistance exercise vs. Aquatic training on self-reported knee instability, pain, and stiffness in women with knee osteoarthritis: A randomized controlled trial. BMC Sports Sci Med Rehabil. 2020;12:27. [PubMed ID: 32368344]. [PubMed Central ID: PMC7189678]. https://doi.org/10.1186/s13102-020-00175-y.

  • 37.

    Sadeghi H, Noori S. [Reliability of functional balance static, semi-dynamic and dynamic tests in Ectomorph women aged youth]. Exercise Sci Med. 2015;7(1):35-55. Persian.

  • 38.

    Mohammad Gholinejad P, Hojjati H, Ghorbani S. [The effect of aerobic exercise on body composition and muscle strength of female students at elementary schools of Ali Abad Katoul in 2018]. International J School Health. 2019;6(4):27-33. Persian.

  • 39.

    Niazi Nejad N, Parnow A, Eslami R. [Effect of linear and nonlinear periodized programs on muscular strength and endurance in untrained adolescence girls]. J Practical Studies Biosciences in Sport. 2018;6(11):59-71. Persian.

  • 40.

    bahram ME, Afroundeh R, Pourvaghar MJ. The effect of 12 weeks of training with total body resistance on static and dynamic balance in older men. Iran J Rehabilitation Res Nursing. 2020;6(4):30-8. https://doi.org/10.29252/ijrn-06044.

  • 41.

    Jafari F, Asgari N, Askari MH, Hekmatipour N, Roodposhti ME. The effect of total-body resistance exercise on muscle endurance of female students. Int J Med Investigation. 2022;11(2):83-92.

  • 42.

    Daneshjoo A, Eslami A, Mousavi Sadati SK. [Effect of core stability training on the balance and FMS scores of adolescent soccer players]. The Sci J Rehabilitation Med. 2020;9(2):61-70. Persian.

  • 43.

    Mokhtari Fard Z, Sabbagh Langeroudi M. The effects of 8 weeks trx exercises and core stability in the stable level on the landing pattern, the stability of the core area and balance of girls football players. Sci J Rehabilitation Med. 2021;10(3):546-61. https://doi.org/10.32598/sjrm.10.3.14.

  • 44.

    Kousha M, Norasteh AA, Khalili SL. The effect of core stabilization training on balance in children with attention deficit/hyperactivity disorders (ADHD). J Guilan Univ Med Sci. 2016;25(99):82-92.

  • 45.

    Heydarpoor S, Yazarloo M, Roodposhti ME, Ataei F, Gharehbagh ZA, Azimpour S, et al. [The Effect of Spiritual Self-care Training on the Anxiety of Mothers of Premature Infants Admitted to NICUs]. J Pharmaceutical Negative Results. 2022:339-43. Persian.

  • 46.

    Shahrabady S, Gholami S, Afsharloo S, Fakhreazizi S, Izadi M, Hojjati H. The effect of poetry reading on self-concept of primary adolescents. Int J Adolesc Med Health. 2020;33(6):457-61. [PubMed ID: 32549161]. https://doi.org/10.1515/ijamh-2019-0216.

  • 47.

    Ghabimi M, Mahdavipour F, Zarei M, Mazroei R, Kamali M, Askarpour A. The effect of implementing pain control guidelines on the pain of patients admitted to the intensive care unit. J Pharmaceutical Negative Results. 2022:344-8.