-
1.
Permenter MG, Lewis JA, Jackson DA. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PLoS One. 2011;6(11). e27730. doi: 10.1371/journal.pone.0027730. [PubMed: 22110744]. [PubMed Central: PMC3218028].
-
2.
De Flora S, Iltcheva M, Balansky RM. Oral chromium(VI) does not affect the frequency of micronuclei in hematopoietic cells of adult mice and of transplacentally exposed fetuses. Mutat Res. 2006;610(1-2):38-47. doi: 10.1016/j.mrgentox.2006.06.011. [PubMed: 16872865].
-
3.
Ma F, Zhang Z, Jiang J, Hu J. Chromium (VI) potentiates the DNA adducts (O(6)-methylguanine) formation of N-nitrosodimethylamine in rat: implication on carcinogenic risk. Chemosphere. 2015;139:256-9. doi: 10.1016/j.chemosphere.2015.06.077. [PubMed: 26143543].
-
4.
Xia H, Ying S, Feng L, Wang H, Yao C, Li T, et al. Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI). Chem Biol Interact. 2019;299:44-51. doi: 10.1016/j.cbi.2018.11.019. [PubMed: 30496737].
-
5.
Monteiro J, Cunha LAD, Costa M, Reis HSD, Aguiar A, Oliveira-Bahia VRL, et al. Mutagenic and histopathological effects of hexavalent chromium in tadpoles of Lithobates catesbeianus (Shaw, 1802) (Anura, Ranidae). Ecotoxicol Environ Saf. 2018;163:400-7. doi: 10.1016/j.ecoenv.2018.07.083. [PubMed: 30064085].
-
6.
Barhoma RAE. The role of eugenol in the prevention of chromium-induced acute kidney injury in male albino rats. Alexandria J Med. 2018;54(4):711-5. doi: 10.1016/j.ajme.2018.05.006.
-
7.
Husain N, Mahmood R. 3,4-Dihydroxybenzaldehyde quenches ROS and RNS and protects human blood cells from Cr(VI)-induced cytotoxicity and genotoxicity. Toxicol In Vitro. 2018;50:293-304. doi: 10.1016/j.tiv.2018.04.004. [PubMed: 29665407].
-
8.
Soudani N, Troudi A, Bouaziz H, Ben Amara I, Boudawara T, Zeghal N. Cardioprotective effects of selenium on chromium (VI)-induced toxicity in female rats. Ecotoxicol Environ Saf. 2011;74(3):513-20. doi: 10.1016/j.ecoenv.2010.06.009. [PubMed: 20580087].
-
9.
Barapatre A, Meena AS, Mekala S, Das A, Jha H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol. 2016;86:443-53. doi: 10.1016/j.ijbiomac.2016.01.109. [PubMed: 26836619].
-
10.
Rather LJ, Mohammad F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain Chem Pharm. 2015;2:12-30. doi: 10.1016/j.scp.2015.08.002.
-
11.
Saratale RG, Saratale GD, Cho SK, Ghodake G, Kadam A, Kumar S, et al. Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing. J Taiwan Inst Chem Eng. 2019;99:239-49. doi: 10.1016/j.jtice.2019.03.003.
-
12.
Sadiq MB, Hanpithakpong W, Tarning J, Anal AK. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Elsevier. 2017;77:873-82. doi: 10.1016/j.indcrop.2015.09.067.
-
13.
Ali MT, Haque ST, Kabir ML, Rana S, Haque ME. A comparative study of in vitro antimicrobial, antioxidant and cytotoxic activity of Albizia lebbeck and Acacia nilotica stem bark. Bull Fac Pharm Cairo Univ. 2018;56(1):34-8. doi: 10.1016/j.bfopcu.2017.10.002.
-
14.
Saha MR, Dey P, Sarkar I, De Sarker D, Haldar B, Chaudhuri TK, et al. Acacia nilotica leaf improves insulin resistance and hyperglycemia associated acute hepatic injury and nephrotoxicity by improving systemic antioxidant status in diabetic mice. J Ethnopharmacol. 2018;210:275-86. doi: 10.1016/j.jep.2017.08.036. [PubMed: 28859934].
-
15.
Revathi S, Govindarajan RK, Rameshkumar N, Hakkim FL, Al-Buloshi M, Krishnan M, et al. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal Agric Biotechnol. 2017;11:322-9. doi: 10.1016/j.bcab.2017.08.005.
-
16.
Khalid R, Aslam Z, Abbas A, Ahmad W, Ramzan N, Shawabkeh R. Adsorptive potential of Acacia nilotica based adsorbent for chromium(VI) from an aqueous phase. Chin J Chem Eng. 2018;26(3):614-22. doi: 10.1016/j.cjche.2017.08.017.
-
17.
Rani N, Gupta A, Yadav AK. Removal of Cr (VI) from aqueous solutions by Acacia nilotica bark. Environ Technol. 2006;27(6):597-602. doi: 10.1080/09593332708618672. [PubMed: 16865915].
-
18.
Iheagwam FN, Nsedu EI, Kayode KO, Emiloju OC, Ogunlana OO, Chinedu SN. Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction. AIP Conference Proceedings 1954. 2018;1954(1):30015. doi: 10.1063/1.5033395.
-
19.
Elizabeth OO, Nonso IF, Adebola NI, John OJ. Comparative study on chemical composition and antioxidant activity of Annona muricata plant parts cultivated in Covenant University, Ota, Ogun State, Nigeria. Curr Res Nutr Food Sci. 2018;6(3):807-15. doi: 10.12944/crnfsj.6.3.23.
-
20.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-75. doi: 10.1016/s0021-9258(19)52451-6.
-
21.
Kumari K, Khare A, Dange S. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. Biomed Res Int. 2014;2014:782493. doi: 10.1155/2014/782493. [PubMed: 25302308]. [PubMed Central: PMC4180195].
-
22.
Yan J, Huang H, Liu Z, Shen J, Ni J, Han J, et al. Hedgehog signaling pathway regulates hexavalent chromium-induced liver fibrosis by activation of hepatic stellate cells. Toxicol Lett. 2020;320:1-8. doi: 10.1016/j.toxlet.2019.11.017. [PubMed: 31756458].
-
23.
Kalaivani T, Rajasekaran C, Suthindhiran K, Mathew L. Free radical scavenging, cytotoxic and hemolytic activities from leaves of Acacia nilotica (L.) Wild. ex. Delile subsp. indica (Benth.) Brenan. Evid Based Complement Alternat Med. 2011;2011:274741. doi: 10.1093/ecam/neq060. [PubMed: 21799676]. [PubMed Central: PMC3135906].
-
24.
Sharma AK, Kumar A, Yadav SK, Rahal A. Studies on antimicrobial and immunomodulatory effects of hot aqueous extract of Acacia nilotica L. Leaves against common veterinary pathogens. Vet Med Int. 2014;2014:747042. doi: 10.1155/2014/747042. [PubMed: 24804150]. [PubMed Central: PMC3996978].
-
25.
Ndamitso MM, Mustapha S, Etsuyankpa MB, Ajai AI, Mathew JT. Evaluation of chemical composition of Acacia nilotica seeds. FUW Trends in Science & Technology Journal. 2017;2(2):927-31.
-
26.
Ajayi K, Adepoju OT, Taiwo OM, Omojola ST, Aladetuyi ME. Nutritional potential of underutilized gum arabic tree seeds (Acacia nilotica) and locust bean seeds (Parkia biglobosa). Afr J Food Sci. 2018;12(8):196-203. doi: 10.5897/ajfs2017.1650.
-
27.
Bwai MD, Uzama D, Abubakar S, Olajide OO, Ikokoh PP, Magu J. Proximate, elemental, phytochemical and anti-fungal analysis of Acacia nilotica fruit. Pharm Biol Eval. 2015;2(3):52-9.
-
28.
Abbasian K, Asgarpanah J, Ziarati P. Chemical composition profile of Acacia nilotica seed growing wild in south of Iran. Orient J Chem. 2015;31(2):1027-33. doi: 10.13005/ojc/310251.
-
29.
Elshazly MO, Morgan AM, Ali ME, Abdel-Mawla E, Abd El-Rahman SS. The mitigative effect of Raphanus sativus oil on chromium-induced geno- and hepatotoxicity in male rats. J Adv Res. 2016;7(3):413-21. doi: 10.1016/j.jare.2016.02.008. [PubMed: 27222746]. [PubMed Central: PMC4856824].
-
30.
Avila RI, Mattos Alvarenga CB, Avila PH, Moreira RC, Arruda AF, Fernandes TO, et al. Eugenia dysenterica DC. (Myrtaceae) exerts chemopreventive effects against hexavalent chromium-induced damage in vitro and in vivo. Pharm Biol. 2016;54(11):2652-63. doi: 10.1080/13880209.2016.1178306. [PubMed: 27241623].
-
31.
Balakrishnan R, Satish Kumar CS, Rani MU, Srikanth MK, Boobalan G, Reddy AG. An evaluation of the protective role of α-tocopherol on free radical induced hepatotoxicity and nephrotoxicity due to chromium in rats. Indian J Pharmacol. 2013;45(5):490-5. doi: 10.4103/0253-7613.117778. [PubMed: 24130385]. [PubMed Central: PMC3793521].
-
32.
Anandasadagopan SK, Sundaramoorthy C, Pandurangan AK, Nagarajan V, Srinivasan K, Ganapasam S. S-Allyl cysteine alleviates inflammation by modulating the expression of NF-κB during chromium (VI)-induced hepatotoxicity in rats. Hum Exp Toxicol. 2017;36(11):1186-200. doi: 10.1177/0960327116680275. [PubMed: 28988497].
-
33.
Ben Hamida F, Troudi A, Sefi M, Boudawara T, Zeghal N. The protective effect of propylthiouracil against hepatotoxicity induced by chromium in adult mice. Toxicol Ind Health. 2016;32(2):235-45. doi: 10.1177/0748233713498446. [PubMed: 24081637].
-
34.
Saha J, Choudhuri S, Choudhuri D. Effect of sub-chronic exposure to chromium on haematological and biochemical parameters of male albino rat. Asian J Pharm Clin Res. 2017;10(5):345. doi: 10.22159/ajpcr.2017.v10i5.17468.
-
35.
Mary Momo CM, Ferdinand N, Omer Bebe NK, Alexane Marquise MN, Augustave K, Bertin Narcisse V, et al. Oxidative effects of potassium dichromate on biochemical, hematological characteristics, and hormonal levels in rabbit doe (Oryctolagus cuniculus). Vet Sci. 2019;6(1). doi: 10.3390/vetsci6010030. [PubMed: 30889790]. [PubMed Central: PMC6466139].
-
36.
Bayraktar O, Tekin N, Aydin O, Akyuz F, Musmul A, Burukoglu D. Effects of S-allyl cysteine on lung and liver tissue in a rat model of lipopolysaccharide-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(3):327-35. doi: 10.1007/s00210-014-1076-z. [PubMed: 25480742].
-
37.
Zhao Y, Yan J, Li AP, Zhang ZL, Li ZR, Guo KJ, et al. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats. Toxicol Lett. 2019;310:31-8. doi: 10.1016/j.toxlet.2019.04.007. [PubMed: 30974164].
-
38.
Hfaiedh M, Brahmi D, Zourgui L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ Toxicol. 2016;31(3):339-49. doi: 10.1002/tox.22048. [PubMed: 25270677].
-
39.
Zhong X, Zeng M, Bian H, Zhong C, Xiao F. An evaluation of the protective role of vitamin C in reactive oxygen species-induced hepatotoxicity due to hexavalent chromium in vitro and in vivo. J Occup Med Toxicol. 2017;12:15. doi: 10.1186/s12995-017-0161-x. [PubMed: 28638434]. [PubMed Central: PMC5472873].
-
40.
Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp Toxicol Pathol. 2011;63(6):541-8. doi: 10.1016/j.etp.2010.04.005. [PubMed: 20494564].
-
41.
Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, et al. Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. Environ Pollut. 2020;259:113812. doi: 10.1016/j.envpol.2019.113812. [PubMed: 31884211].
-
42.
Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, et al. Bone marrow mesenchymal stem cells repair Cr (VI)- injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. Ecotoxicol Environ Saf. 2019;176:234-41. doi: 10.1016/j.ecoenv.2019.03.093. [PubMed: 30939403].
-
43.
Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):1183-97. doi: 10.1002/jat.3965. [PubMed: 32166774].
-
44.
DeLoughery Z, Luczak MW, Zhitkovich A. Monitoring Cr intermediates and reactive oxygen species with fluorescent probes during chromate reduction. Chem Res Toxicol. 2014;27(5):843-51. doi: 10.1021/tx500028x. [PubMed: 24646070]. [PubMed Central: PMC4027954].
-
45.
Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS One. 2014;9(8). e103194. doi: 10.1371/journal.pone.0103194. [PubMed: 25111056]. [PubMed Central: PMC4128586].
-
46.
Wakeman TP, Yang A, Dalal NS, Boohaker RJ, Zeng Q, Ding Q, et al. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget. 2017;8(48):83975-85. doi: 10.18632/oncotarget.20150. [PubMed: 29137397]. [PubMed Central: PMC5663569].
LEAVE A COMMENT HERE: