Upscalability and Techno-economic Perspectives of Nonconventional Essential Oils Extraction Techniques

authors:

avatar Olusegun Abayomi Olalere ORCID 1 , * , avatar Chee-Yuen Gan ORCID 1 , ** , avatar Oladayo Adeyi 2 , avatar Abiola Ezekiel Taiwo 3 , avatar Funmilayo Grace Olaiya 4 , avatar Abiola Adeyi 5 , avatar Olumide Samson Fawale 6

Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
Department of Chemical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria
Department of Chemical Engineering, Landmark University Omu Aran, Kwara State, Nigeria
School of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Penang, Malaysia
Forest Research Insitute, Ibadan Oyo State, Nigeria
Food Science Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
Corresponding Authors:

How To Cite Olalere O A, Gan C, Adeyi O, Taiwo A E, Olaiya F G, et al. Upscalability and Techno-economic Perspectives of Nonconventional Essential Oils Extraction Techniques. Jundishapur J Nat Pharm Prod. 2022;17(3):e122792. https://doi.org/10.5812/jjnpp-122792.

Abstract

Context:

Nonconventional extraction methods, such as microwave, supercritical fluid, and ultrasonic, are known to be veritable means of producing solvent-free high-quality essential oils. Nonetheless, technical requirements for the utilization of these extraction technologies are often exorbitantly expensive, thereby limiting their utilization.

Evidence Acquisition:

Although these emerging extraction technologies have been reported to be efficient at a laboratory scale, their techno-economic analyses are necessary for proper upscaling. Scaling up nonconventional extraction has long been regarded as a critical constraint in larger industrial applications with a relatively limited body of published literature on more specific techno-economic analyses.

Results:

Therefore, an essential oil extraction unit’s techno-economic feasibility should be carefully assessed before an acquisition decision can be made for industrial upscaling. This review critically examined the implications of upscaling nonconventional extraction techniques while taking into consideration their techno-economic benefits.

Conclusions:

This study will undoubtedly assist researchers and industrial experts make an informed decision on the suitable extraction methods while taking into account the essential oil yield, quality characteristics, energy consumption, and operating costs.

1. Context

Essential oils are utilized in a wide variety of consumer products, such as dishwashers, detergents, hygiene products, skincare products, medicinal products, fragrances, pantries, soft drinks, processed liquor, and pesticides (1). They are generally known as volatile aromatic oils derived from natural sources, such as leaves, exfoliates, twigs, flowers, petals, and pods (2). Essential oils are commonly produced from different plant species, among which notably are the aromatic plants varying in color and aroma (2). Based on the type and quantity of bioactive components in the oil, they have been frequently used as culinary fragrances. Furthermore, the quantity of essential oil from various plants varies, which invariably determines their prices in the international market (3). Antioxidant and antibacterial properties have been discovered in essential oils, making them valuable as natural additives in a variety of foods (1). They differ in their actions depending on the source, bioactive characteristics, and extraction techniques.

Numerous functional and therapeutic species of plants possess volatile chemical components that are often recovered as essential oils using a suitable extracting solvent. It is important to know that essential oils are only a minor part of a plant’s makeup, yet they offer distinctive qualities useful in the culinary, pharmaceutical, and cosmetic industries (4). Essential oils exhibit complex molecular structures with a myriad of bioactive constituents with hydrocarbons and oxygenated compounds inclusive (5). Numerous systems are employed to extract essential oils from various plant parts. Although these methods appear to be a simplistic process, the selection of appropriate extraction conditions and the solvent is very crucial to preserving the thermally sensitive volatile constituents (6). Moreover, the stability and purity of these essential oils are significant considerations when deciding which extraction method to utilize, which is a key issue to consider.

2. Evidence Acquisition

2.1. Overview of Extraction Techniques of Essential Oils

The composition of essential oil might differ greatly depending on the utilized extraction techniques. Conventional methods have been used for a variety of plant species and agricultural waste products, namely hydrodistillation, cold pressing, Soxhlet apparatus, and maceration. However, conventional extraction procedures have several drawbacks, including high costs, higher solvent consumption, longer extraction times, higher energy consumption, poorer degree of selectivity, and low-quality extracts (7, 8). Given the long extraction duration of most conventional extraction techniques, the degradation of bioactive components in the plant material is unavoidably expected (9, 10). Extreme heat might induce changes in the constituents of essential oils and eventual degradation of volatile compounds during the steam distillation and hydrodistillation extraction process (11, 12). Moreover, a trace amount of solvent and impurities is usually present in the resultant extract when using the conventional extraction method (13). Nevertheless, the use of advanced nonconventional extraction methods helps in the production of high-quality essential oils that are solvent-free. However, the technical requirements for the utilization of modern extraction technologies are often exorbitantly expensive, thereby limiting their utilization.

The extraction method determined to a larger extent operating cost, energy consumption, composition, degree of product purity, and targeted bioactive compounds (3). Microwave assisted extraction (MAE) is an example of a nonconventional extraction method with countless scientific investigations affirming its capacity to produce essential oils without contaminants. Microwave extraction is a newer technology that integrates electromagnetic radiation and multidirectional conventional solvent treatment (14, 15). The rates of conduction and convection are incredibly quick in seconds in MAE and are often disregarded and believed to be negligible. This issue provides the prospect of a reduced extraction time, minimized energy usage, reduced solvent usage, increased bioactive selectivity, and better extraction rates (16, 17).

Furthermore, in recent times, more investigation into essential oil has increasingly shown the capacity of supercritical fluid in extracting pure essential oil from plant-based natural products (18). The absence of highly harmful solvents in supercritical extraction demonstrates its environmental friendliness. Ultrasonic assisted extraction (UAE) is another perspective extraction technique that is gaining attention due to its numerous advantages (19). The UAE is an extraction technology developed to overcome the limitations of conventional extraction techniques. Compared to traditional extraction technologies, UAE achieves higher selectivity, high oil recovery (yield), low energy consumption and reduced emissions, low (or no) solvent requirement, reduced extraction time, and superior essential oil qualities (20). Additionally, when compared to other extraction techniques for essential oil recoveries, such as supercritical fluid extraction (SFE) and MAE, UAE is a simple, efficient, and inexpensive technology (19). In theory, UAE achieves its high effectiveness in essential oil extraction through the acoustic cavitation effect, which is introduced by the passage of ultrasonic waves and, in turn, causes cell disruptions and mass and heat transfer (21). Table 1 shows a list of current studies on essential oils extraction using nonconventional techniques.

Table 1.

Modern Essential Oil Extraction Techniques from Different Plant Sources

SamplesParts of PlantExtraction MethodsReferences
Cinnamon barkBarkUltrasonic pretreatment(19)
Cinnamon BarkUltrasonic-enhanced subcritical water extraction(19)
Sargassum fusiformeLeavesUltrasonic-assisted extraction(21)
Clove budsBudsIn situ microwave-assisted extraction(22)
Pinus pumila (Pall.)Fresh needlesSolvent-free microwave-assisted extraction(23)
Asarumheterotropoides var. mandshuricumRoots and rhizomesMicrowave-assisted steam distillation(24)
Industrial hemp (Cannabis sativa L.) LeavesOptimized microwave-assisted extraction(25)
Coriander seedsSeedsMicrowave-assisted hydrodistillation extraction(26)
Cumin (Cuminumcyminum L.) SeedsThree-stage microwave extraction(27)
Mace (Myristicaearillus)SeedsMicrowave-assisted hydrodistillation(28)
Tangerine PeelSupercritical extraction(29)
Torch ginger [Etlingeraelatior (Jack) R.M. Smith]Buds with stalksOptimized supercritical CO2 extraction(30)
Patchouli LeafOptimized supercritical CO2 extraction(18)
PogostemoncablinStem and leavesOptimized supercritical CO2 extraction(31)
Algerian Argan (Argania spinosa L.) SeedsOptimized supercritical CO2 extraction(32)
Turmeric RootOptimized supercritical CO2 extraction(33)
PistacialentiscusBerriesOptimized ultrasonic extraction(34)
Salvia sp. Solid waste residuesUltrasonic extraction(35)
Tiger nut (Cyperusesculentus L.) NutMicrowave-ultrasonic assisted aqueous enzymatic method(36)
Artemisia argyiLeavesAqueous enzyme-ultrasonic pretreatment(37)
MaesopsiseminiiSeedsOptimized ultrasonic-assisted extraction(38)

2.2. Upscaling Extraction Process of Essential Oils

The implementation of upscaling methodologies and the consideration of suitable parameter settings are critical for any extraction technique to meet increasing sustainable industrial requirements (39). Scaling up extraction techniques is not an easy process and is not as simple as raising the number of solvents and the quantity of plant material; it is an approach that is more scientific and analytical (40). Additionally, the terms “upscaling”, “laboratory scale”, and “pilot scale” have been used for a wide variety of extraction capacities; therefore, upscaling levels should be interpreted with caution. In recent studies, the factors, such as instrumentation, batch/flow process, kinetics, economics, and energy usage, are a few of the numerous variables that have been explored while scaling up extraction technologies from the laboratory to the industrial size (41). For every scale-up operation to succeed or fail, the factors, such as energy consumption, design of extraction system (instrumentation), and parameter settings, should be considered. Depending on the extraction method, the energy utilization methods change. For example, in SFE, the solvent pump and separator heaters use a considerable amount of energy (42).

Moreover, the overall extraction duration and energy consumption might be affected by the dissipation factor of the solvent used in MAE, which determines how much heat is generated (43). In addition, Belwal et al. (42) noted that UAE on its own promotes energy efficiency, resulting in lower overall operating costs for high-quality extracts. In part, this is since the UAE line comprises preparation, extraction, separation, concentration, and drying units. The essential oil extraction unit operations are typically less expensive, except for the solid-liquid separation units and dryers, which tend to be more energy-consuming than the rest (42).

Another factor that is of special importance is the type of instrumentation or design of the extraction units. Currently, numerous firms around the globe provide a wide variety of technologies, from the science laboratory to pilot and industrial sizes, for modern essential oil extraction processes. In contrast, serial manufacturing is used for small laboratory and high-capacity pilot equipment, often having extractors units up to 15 liters in throughput (42). Higher-capacity pilot and industrial extraction units are usually manufactured according to customized designs to meet the demands of the end-users. As an extra validation of the accuracy of upscale system design, the pilot-scale evaluation might be incorporated once laboratory investigations have been completed (42).

A large number of analytical and empirical results can be utilized to eliminate the necessity of costly and time-consuming experiments and pre-testing processes, which are often expensive and complex. In addition, parameter settings or extraction criteria are important factors that determine the success or failure of any scale-up operation (44). In numerous instances, the experts have explored varieties of quality characteristics and parameter settings that could be associated with a range of natural product resources to obtain high-quality essential oils. The effectiveness of scale-up operations is determined by a variety of variables utilized in the extraction techniques (45, 46). For example, in the MAE of essential oils, the parameters, such as dielectric property/solvent type, energy density, microwave power level, sample particle size, and microwave irradiation time, affect the basic electromagnetic mechanism of upscaling the microwave technologies to a larger extent (47).

Additionally, most studies on the SFE of essential oils examined the influence of temperature, pressure, fluid flow rate, sample size, modifiers, and fractionation on extraction yield. In addition to improving essential oil yield, the appropriate adjustment of these parameters can reduce sample losses, save time and operating cost, and ensure high-quality essential oils (48). Scale-up in UAE is substantially influenced by the factors, such as ultrasonic density, vessel shape, batch/flow mode temperature, ultrasound duration, sample-solvent ratio, and ultrasonic power, as reported by Marhamati et al. (49).

Ultimately, the scaling up principle requires ensuring that the extract’s economic and quality standards are satisfied. Although lab-scale extractions use small amounts of sample/extracting solvent and have comparatively shorter extraction durations, pilot or industrial scale extractions necessitate careful technological and economic analysis, as discussed in the next section of this review.

3. Results

3.1. Techno-economical Analysis of Essential Oil Production

The techno-economic analysis should be evaluated in any extraction facility, as it is the key to deciding on the potential large-scale production of essential oil. The approach proposed by Douglas (50) uses flow sheeting and input-output data as a valuable tool for simplifying the conceptual design of any essential oil extraction process. This approach has been used by techno-economic experts to estimate the profitability of modern technologies for numerous unit operations (51). The techno-economic study includes extractor flow sheets, equipment sizing, price of equipment units, and profitability analysis (52). In addition to Turton et al.’s (51) cost of manufacture technique, industrial units’ economic viability for essential oil extraction from natural products can also be determined using this strategy. Industrial process simulators, such as the SuperPro Designer® (version 8.5), have been used to assess the total cost of production, taking into account the operating expenses, operative labor, utility expenses, waste disposal, and materials procurement (53-55). It is important to know that nonconventional reactors have higher running costs than conventional reactors when estimating capital investment costs. This issue is partly due to the need for fewer extraction steps than traditional methods, resulting in a tenfold reduction in pollution, as reported by Belwal et al. (42). On the other hand, nontraditional extraction technologies promote energy savings and lower the cost of producing high-quality essential oils industrially. It also requires a multistep procedure since it needs additional auxiliary equipment for processing and purification, making it more costly to operate.

Each extraction technique has its own set of benefits and drawbacks. Essential oil production from diverse plant sources has been previously evaluated from a technological and economic perspective. There are certain research gaps to address in terms of the comprehensive cost analysis of essential oil production, designed for industrial purposes (56). Understanding the operation mechanism of different processing technologies is fundamental to deciding the expenses and market capitalization of essential oil production; however, the yield of oil-bearing plants and quality and the purity of their oil might have a major influence on the market price (3). The industrial viability of essential oils produced from various plant material sources using different technologies has been carried out to determine the involved technical and economic parameters (3). The process simulators, such as Aspen Plus and Superpro Designer software, have been reported for the base case designs and upscaling of proposed processes. Preliminary process designs have been proposed using different plant configurations and operation modes (i.e., continuous, semi-continuous, or batch) (3). Generally, a typical plant for essential oil production is dependent on the technology of extraction integrated with other adjoining equipment (57).

The techno-economic analyses of essential oil production from Rosmarinus officinalis leaves, Foeniculum vulgareL seeds, Pimpinella anisumL. seeds, Origanum vulgare, and Rosmarinus officinalis (56), Cymbopogon winteriana and Cymbopogon citrus (57), and Eucalyptus citriodoraleaves (58) have been documented. A typical simplified flow sheet for the extraction of essential oil using SFE technology consists of a plant material grinder, fluid pump, heat exchanger, depressurization vessel, dryer, and extraction vessel (59). Frequently, technical parameters relating to the extraction of essential oils and some other adjoining equipment that is used for the building of the process flow-sheet are obtained from optimum laboratory data. The material and energy requirements of each process equipment and entire process are obtained and subsequently used for equipment sizing and specifications.

The process of economic analysis of essential oil production from plant materials involves the determination of production costs (i.e., total annual operating and capital investment costs) and profitability parameters (e.g., pay-back time, return on investment, and internal rate of returns) of the production process (3, 56, 57). It is a sum of the direct fixed capital costs (i.e., total plant direct and indirect costs and additional expenses), working capital, and start-up/validation expenses. Materials, facilities, labor expenditures, and laboratory quality control and quality assurance charges make up the total yearly operating expenses. A thorough techno-economic analysis of essential oil extraction from three plant samples (i.e., Rosmarinus officinalis, Foeniculum vulgare, and Pimpinella anisum) utilizing SFE and steam distillation technologies indicated that SFE is more economically sustainable than steam distillation production technologies in lower energy consumption and higher essential oil yield (59). On the other hand, the expenses of essential oil extraction are determined by the plant material (i.e., total oil extractible) and the sophistication of the involved technique.

Although extensive techno-economic analyses of essential oil production from plant materials have been documented for numerous extraction technologies, such as supercritical fluid and solvent, steam, and water distillation, other novel technologies, such as microwave and UAE, have no or limited documentation. Likewise, the economic and technical feasibility information about the process integration of novel technologies’ pretreatment steps (e.g., ultrasound-assisted hydrodistillation) for the production of essential oils from plant materials has not been well evaluated and documented. Although these emerging technologies have been reported to be efficient at the laboratory scale, their techno-economic analyses are necessary for the proper scaling up and industrial feasibility.

4. Conclusions

Essential oils are volatile hydrophobic concentrated liquids that are usually derived from natural sources, such as leaves, exfoliates, twigs, flowers, petals, and pods. They are widely used for different medicinal and therapeutic applications due to their bioactive constituents. The quality or quantity characteristics of essential oil differ greatly depending on the utilized extraction techniques. Industrial demands have led to a continual quest for a novel method of extracting high-quality essential oil from natural sources at reduced costs. Numerous studies have shown the need to assess essential oil quality, production costs, and energy efficiency and examine the close relationship between essential oil supplies and the availability of different natural product sources. It is important to know that the quality of essential oils, operating costs, and energy consumption are significant considerations when selecting a suitable extraction method. This review critically examined the implications of upscaling nonconventional extraction methods while taking into consideration their techno-economic benefits. This study will undoubtedly assist researchers and industrial experts make an informed decision on the suitable extraction methods with maximum yield and quality characteristics.

References

  • 1.

    Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A. Natural Plant-Derived Chemical Compounds as Listeria monocytogenes Inhibitors In Vitro and in Food Model Systems. Pathogens. 2020;10(1). [PubMed ID: 33375619]. [PubMed Central ID: PMC7823385]. https://doi.org/10.3390/pathogens10010012.

  • 2.

    Flamini G, Tebano M, Cioni PL, Ceccarini L, Ricci AS, Longo I. Comparison Between The Conventional Method Of Extraction Of Essential Oil Of Laurus Nobilis L. And A Novel Method Which Uses Microwaves Applied In Situ, Without Resorting To An Oven. J Chromatogr A. 2007;1143(1-2):36-40. [PubMed ID: 17239898]. https://doi.org/10.1016/j.chroma.2007.01.031.

  • 3.

    Adeyi O, Adeyi AJ, Oke EO, Okolo BI, Olalere AO, Otolorin JA, et al. Techno-Economic And Uncertainty Analyses Of Heat- And Ultrasound-Assisted Extraction Technologies For The Production Of Crude Anthocyanins Powder From Hibiscus Sabdariffa Calyx. Cogent Eng. 2021;8(1). https://doi.org/10.1080/23311916.2021.1947015.

  • 4.

    Vasquez WV, Hernández DM, del Hierro JN, Martin D, Cano M, Fornari T. Supercritical Carbon Dioxide Extraction Of Oil And Minor Lipid Compounds Of Cake Byproduct From Brazil Nut (Bertholletia Excelsa) Beverage Production. J Supercrit Fluids. 2021;171:105188. https://doi.org/10.1016/j.supflu.2021.105188.

  • 5.

    Stratakos AC, Koidis A. Methods for Extracting Essential Oils. In: Preedy VR, editor. Essential Oils in Food Preservation, Flavor and Safety. Massachusetts, USA: Academic Press; 2016. p. 31-8. https://doi.org/10.1016/b978-0-12-416641-7.00004-3.

  • 6.

    Olalere OA, Gan C. Investigating The Heat Stability, Calorimetric Degradations And Chromatographic Polyphenolic Profiling Of Edible Macerated Hog-Tree Apple Leaf (Morinda Lucida Benth). Chem Pap. 2020;75(3):1291-9. https://doi.org/10.1007/s11696-020-01382-0.

  • 7.

    Cui H, Chen X, Wang L, An P, Zhou H, Dong Y. Essential Oils from Citrus reticulata cv. Shatangju Peel: Optimization of Hydrodistillation Extraction by Response Surface Methodology and Evaluation of Their Specific Adhesive Effect to Polystyrene. ACS Omega. 2021;6(21):13695-703. [PubMed ID: 34095662]. [PubMed Central ID: PMC8173550]. https://doi.org/10.1021/acsomega.1c00895.

  • 8.

    Panjaitan R, Mahfud M, Cahyati ED, Pujaningtyas L. The Study Of Parameters Of Essential Oil Extraction From Black Pepper Seed Using Microwave Hydrodistillation By Modeling. International Conference of Biomass and Bioenergy. Bogor, Indonesia. IOP Publishing Ltd; 2021. 12032 p.

  • 9.

    Olusegun OA, Chee-Yuen G. Biopharmaceutical Application of Microwave Technology and the Scalability Concerns. Jundishapur J Nat Pharm Prod. 2022;17(1). e121619. https://doi.org/10.5812/jjnpp.121619.

  • 10.

    Olalere OA, Gan CY, Akintomiwa OE, Adeyi O, Adeyi A. Optimisation of microwave-assisted extraction and functional elucidation of bioactive compounds from Cola nitida pod. Phytochem Anal. 2021;32(5):850-8. [PubMed ID: 33583076]. https://doi.org/10.1002/pca.3030.

  • 11.

    Olalere OA, Gan C. Intensification Of Microwave Energy Parameters And Main Effect Analysis Of Total Phenolics Recovery From Euphorbia Hirta Leaf. J Food Meas Charact. 2019;14(2):886-93. https://doi.org/10.1007/s11694-019-00338-7.

  • 12.

    Zarrinpashne S, Gorji Kandi S. A Study On The Extraction Of Essential Oil Of Persian Black Cumin Using Static Supercritical Co2 Extraction, And Comparison With Hydro-Distillation Extraction Method. Sep Sci Technol. 2018;54(11):1778-86. https://doi.org/10.1080/01496395.2018.1541907.

  • 13.

    Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, et al. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential - A Review. Curr Drug Metab. 2018;19(13):1100-10. [PubMed ID: 30039757]. https://doi.org/10.2174/1389200219666180723144850.

  • 14.

    Olalere OA, Gan C, Adedeji PA, Olalere ME, Aljbour N. Multi-objective Deng's grey incidence analysis, orthogonal optimization, and artificial neural network modelling in hot-maceration-assisted extraction of African cucumber leaves (Momordica balsamina). Can J Chem Eng. 2021;100(3):588-97. https://doi.org/10.1002/cjce.24138.

  • 15.

    Olalere OA, Gan C. Microwave-assisted extraction of phenolic compounds from Euphorbia hirta leaf and characterization of its morphology and thermal stability. Sep Sci Technol. 2020;56(11):1853-65. https://doi.org/10.1080/01496395.2020.1795678.

  • 16.

    Olalere OA, Abdurahman HN, Yunus RBM, Alara OR, Ahmad MM, Zaki YH, et al. Parameter study, antioxidant activities, morphological and functional characteristics in microwave extraction of medicinal oleoresins from black and white pepper. J Taibah Univ Sci. 2018;12(6):730-7. https://doi.org/10.1080/16583655.2018.1515323.

  • 17.

    Olalere OA, Abdurahman NH, Yunus RBM, Alara OR. Multi-response optimization and neural network modeling for parameter precision in heat reflux extraction of spice oleoresins from two pepper cultivars (Piper nigrum). J King Saud Univ Sci. 2018;31(4):789-97. https://doi.org/10.1016/j.jksus.2017.09.010.

  • 18.

    Soh SH, Jain A, Lee LY, Jayaraman S. Optimized extraction of patchouli essential oil from Pogostemon cablin Benth. with supercritical carbon dioxide. J Appl Res Med Aromat Plants. 2020;19:100272. https://doi.org/10.1016/j.jarmap.2020.100272.

  • 19.

    Guo J, Yang R, Gong Y, Hu K, Hu Y, Song F. Optimization and evaluation of the ultrasound-enhanced subcritical water extraction of cinnamon bark oil. LWT. 2021;147:111673. https://doi.org/10.1016/j.lwt.2021.111673.

  • 20.

    Yu F, Wan N, Zheng Q, Li Y, Yang M, Wu Z. Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from Kumquat peel. Food Sci Nutr. 2021;9(5):2372-80. [PubMed ID: 34026056]. [PubMed Central ID: PMC8116871]. https://doi.org/10.1002/fsn3.2073.

  • 21.

    Nie J, Chen D, Ye J, Lu Y, Dai Z. Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrason Sonochem. 2021;77:105671. [PubMed ID: 34304119]. [PubMed Central ID: PMC8326199]. https://doi.org/10.1016/j.ultsonch.2021.105671.

  • 22.

    Gonzalez-Rivera J, Duce C, Campanella B, Bernazzani L, Ferrari C, Tanzini E, et al. In situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds. Ind Crops Prod. 2021;161:113203. https://doi.org/10.1016/j.indcrop.2020.113203.

  • 23.

    Peng X, Yang X, Gu H, Yang L, Gao H. Essential oil extraction from fresh needles of Pinus pumila (Pall.) Regel using a solvent-free microwave-assisted methodology and an evaluation of acetylcholinesterase inhibition activity in vitro compared to that of its main components. Ind Crops Prod. 2021;167:113549. https://doi.org/10.1016/j.indcrop.2021.113549.

  • 24.

    Xiao Y, Liu Z, Gu H, Yang F, Zhang L, Yang L. Improved method to obtain essential oil, asarinin and sesamin from Asarum heterotropoides var. mandshuricum using microwave-assisted steam distillation followed by solvent extraction and antifungal activity of essential oil against Fusarium spp. Ind Crops Prod. 2021;162:113295. https://doi.org/10.1016/j.indcrop.2021.113295.

  • 25.

    Fiorini D, Scortichini S, Bonacucina G, Greco NG, Mazzara E, Petrelli R, et al. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Ind Crops Prod. 2020;154:112688. https://doi.org/10.1016/j.indcrop.2020.112688.

  • 26.

    Ghazanfari N, Mortazavi SA, Yazdi FT, Mohammadi M. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon. 2020;6(9). e04893. [PubMed ID: 32984601]. [PubMed Central ID: PMC7498746]. https://doi.org/10.1016/j.heliyon.2020.e04893.

  • 27.

    Zhao Y, Wang P, Zheng W, Yu G, Li Z, She Y, et al. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind Crops Prod. 2019;140:111660. https://doi.org/10.1016/j.indcrop.2019.111660.

  • 28.

    Fardhyanti DS, Sediawan WB, Hisyam A; Megawati. Kinetics of mace (Myristicae arillus) essential oil extraction using microwave assisted hydrodistillation: Effect of microwave power. Ind Crops Prod. 2019;131:315-22. https://doi.org/10.1016/j.indcrop.2019.01.067.

  • 29.

    Xiong K, Chen Y. Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chem Eng Res Des. 2020;164:412-23. https://doi.org/10.1016/j.cherd.2020.09.032.

  • 30.

    Marzlan AA, Muhialdin BJ, Zainal Abedin NH, Mohammed NK, Abadl MMT, Mohd Roby BH, et al. Optimized supercritical CO2 extraction conditions on yield and quality of torch ginger (Etlingera elatior (Jack) R.M. Smith) inflorescence essential oil. Ind Crops Prod. 2020;154:112581. https://doi.org/10.1016/j.indcrop.2020.112581.

  • 31.

    Xiong K, Chen Y, Shen S. Experimental optimization and mathematical modeling of supercritical carbon dioxide extraction of essential oil from Pogostemon cablin. Chin J Chem Eng. 2019;27(10):2407-17. https://doi.org/10.1016/j.cjche.2019.03.004.

  • 32.

    Haloui I, Meniai A. Supercritical CO2 extraction of essential oil from Algerian Argan ( Argania spinosa L.) seeds and yield optimization. Int J Hydrog Energy. 2017;42(17):12912-9. https://doi.org/10.1016/j.ijhydene.2016.12.012.

  • 33.

    Khanam S; Priyanka. Influence of operating parameters on supercritical fluid extraction of essential oil from turmeric root. J Clean Prod. 2018;188:816-24. https://doi.org/10.1016/j.jclepro.2018.04.052.

  • 34.

    Belhachat D, Mekimene L, Belhachat M, Ferradji A, Aid F. Application of response surface methodology to optimize the extraction of essential oil from ripe berries of Pistacia lentiscus using ultrasonic pretreatment. J Appl Res Med Aromat Plants. 2018;9:132-40. https://doi.org/10.1016/j.jarmap.2018.04.003.

  • 35.

    Veličković DT, Milenović DM, Ristić MS, Veljković VB. Ultrasonic extraction of waste solid residues from the Salvia sp. essential oil hydrodistillation. Biochem Eng J. 2008;42(1):97-104. https://doi.org/10.1016/j.bej.2008.06.003.

  • 36.

    Hu B, Li Y, Song J, Li H, Zhou Q, Li C, et al. Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method - design, optimization and quality evaluation. J Chromatogr A. 2020;1627:461380. [PubMed ID: 32823093]. https://doi.org/10.1016/j.chroma.2020.461380.

  • 37.

    Zhang Q, Gao W, Guo Y, Li Y, Cao X, Xu W, et al. Aqueous enzyme-ultrasonic pretreatment for efficient isolation of essential oil from Artemisia argyi and investigation on its chemical composition and biological activity. Ind Crops Prod. 2020;158:113031. https://doi.org/10.1016/j.indcrop.2020.113031.

  • 38.

    Joven JMO, Gadian JT, Perez MA, Caingles JG, Mansalaynon AP, Ido AL, et al. Optimized ultrasonic-assisted oil extraction and biodiesel production from the seeds of Maesopsis eminii. Ind Crops Prod. 2020;155:112772. https://doi.org/10.1016/j.indcrop.2020.112772.

  • 39.

    Dao PT, Tran NY, Tran QN, Bach GL, Lam TV. Kinetics of pilot-scale essential oil extraction from pomelo (Citrus maxima) peels: Comparison between linear and nonlinear models. Alex Eng J. 2022;61(3):2564-72. https://doi.org/10.1016/j.aej.2021.07.002.

  • 40.

    Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TRAC-Trend Anal Chem. 2018;100:82-102. https://doi.org/10.1016/j.trac.2017.12.018.

  • 41.

    Filly A, Fernandez X, Minuti M, Visinoni F, Cravotto G, Chemat F. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem. 2014;150:193-8. [PubMed ID: 24360439]. https://doi.org/10.1016/j.foodchem.2013.10.139.

  • 42.

    Belwal T, Chemat F, Venskutonis PR, Cravotto G, Jaiswal DK, Bhatt ID, et al. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TRAC-Trend Anal Chem. 2020;127:115895. https://doi.org/10.1016/j.trac.2020.115895.

  • 43.

    Olalere OA, Abdurahman HN, Gan C. Microwave-enhanced extraction and mass spectrometry fingerprints of polyphenolic constituents in Sesamum indicum leaves. Ind Crops Prod. 2019;131:151-9. https://doi.org/10.1016/j.indcrop.2018.12.024.

  • 44.

    Olalere OA, Abdurahman NH, Yunus RBM, Alara OR, Akbari S. Evaluation of optimization parameters in microwave reflux extraction of piperine-oleoresin from black pepper (Piper nigrum). Beni-Suef Univ J Basic Appl Sci. 2018;7(4):626-31. https://doi.org/10.1016/j.bjbas.2018.07.006.

  • 45.

    Olalere OA, Abdurahman NH, Alara OR, Habeeb OA. Parametric optimization of microwave reflux extraction of spice oleoresin from white pepper (Piper nigrum). J Anal Sci Technol. 2017;8(1). https://doi.org/10.1186/s40543-017-0118-9.

  • 46.

    Berna A, Tárrega A, Blasco M, Subirats S. Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. J Supercrit Fluids. 2000;18(3):227-37. https://doi.org/10.1016/s0896-8446(00)00082-6.

  • 47.

    Olalere OA, Gan C; Inamuddin. Microwave reflux extraction—An alternative approach for phenolic-rich oleoresins extraction from functional plants. In: Boddula R, Asiri AM, editors. Green Sustainable Process for Chemical and Environmental Engineering and Science. Amsterdam: Elsevier; 2021. p. 661-78. https://doi.org/10.1016/b978-0-12-819848-3.00016-5.

  • 48.

    López-Padilla A, Ruiz-Rodriguez A, Reglero G, Fornari T. Supercritical carbon dioxide extraction of Calendula officinalis : Kinetic modeling and scaling up study. J Supercrit Fluids. 2017;130:292-300. https://doi.org/10.1016/j.supflu.2017.03.033.

  • 49.

    Marhamati M, Kheirati Kakhaki Z, Rezaie M. Advance in Ultrasound-Assisted Extraction of Edible Oils: A Review. Journal of Nutrition, Fasting and Health. 2020;8(4):220-30.

  • 50.

    Douglas JM. Conceptual design of chemical processes. 1110. New York, USA: McGraw-Hill; 1988.

  • 51.

    Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. Analysis, synthesis and design of chemical processes. New Jersey, USA: Pearson Prentice Hall; 2014.

  • 52.

    Soh SH, Jain A, Lee LY, Chin SK, Yin C, Jayaraman S. Techno-economic and profitability analysis of extraction of patchouli oil using supercritical carbon dioxide. J Clean Prod. 2021;297:126661. https://doi.org/10.1016/j.jclepro.2021.126661.

  • 53.

    Adeyi O, Oke EO, Adeyi AJ, Okolo BI, Olalere AO, Otolorin JA, et al. Microencapsulated anthocyanins powder production from Hibiscus sabdariffa L. calyx: Process synthesis and economic analysis. Results Eng. 2022;13:100371. https://doi.org/10.1016/j.rineng.2022.100371.

  • 54.

    Vardanega R, Carvalho PI, Santos DT, Meireles MA. Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innov Food Sci Emerg Technol. 2017;42:73-82. https://doi.org/10.1016/j.ifset.2017.05.007.

  • 55.

    Rosa PT, Meireles MA. Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. J Food Eng. 2005;67(1-2):235-40. https://doi.org/10.1016/j.jfoodeng.2004.05.064.

  • 56.

    Moncada J, Tamayo JA, Cardona CA. Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J Clean Prod. 2016;112:172-81. https://doi.org/10.1016/j.jclepro.2015.09.067.

  • 57.

    Moncada J, Tamayo JA, Cardona CA. Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Ind Crops Prod. 2014;54:175-84. https://doi.org/10.1016/j.indcrop.2014.01.035.

  • 58.

    Mu’azu K, Okonkwo EM, Abdullahi M. Economic Analysis of Production of Essential Oil using Steam Distillation Technology. Nig J Basic Appl Sci. 2010;17(2). https://doi.org/10.4314/njbas.v17i2.49900.

  • 59.

    Pereira CG, Meireles MA. Economic analysis of rosemary, fennel and anise essential oils obtained by supercritical fluid extraction. Flavour Fragr J. 2007;22(5):407-13. https://doi.org/10.1002/ffj.1813.